Upsilon Polarization Measurements

Jonathan Lewis Fermilab 28 May 2010 For the CDF and DØ Collaborations

The Puzzle

- Quarkonium production has not been explained adequately by QCD
 - Naïvely expect vector-meson production suppressed
 - Like OZI in reverse: require 3 gluons for colorless state
 - Feed-down from χ states should dominate
 - Two-gluon production
 - CDF in early '90s found enhanced prompt J/ψ and ψ' production
 - 🔍 No feed-down to ψ'
 - $\mathfrak{G}(\psi')$ was 50x LO expectation
 - Y(nS) cross sections similarly large
 - But reduced p_T reach

Enter Theory

- Non-Relativistic QCD proposed as a remedy
 - Factorize
 - Short-distance hard process creates QQ
 - May be color singlet or octet state
 - Long distance process hadronization
 - Radiates extra gluons
 - Expansion in powers of v
 - Universal 4-quark operators
 - Solution Can largely fit J/ ψ and $\Upsilon(1S)$ production spectra
 - Predict strong transverse polarization at high momentum (p_T²/M² >> 1)
 - Carries properties of the hard gluon parent

Color-Octet Contributions to J/ψ Production

Charmonium Polarization

 $dN/d(\cos\theta^*) \propto 1 + \alpha \cos^2\theta^*$

Inconsistent with NRQCD

- But is the charm quark heavy?
- The bottom quark is!
- Newer NNLO models predict longitudinal Y polarization

28 May 2010

Phys. Rev. Lett. 99, 132001 (0.8 fb⁻¹)

NNLO Can Explain Y Production

Predicting production spectra not a sufficient test of models

Need polarization, too.

28 May 2010

Polarization Measurement

- For several p_T ranges, find dN/dcosθ*
 - s-channel helicity frame
 - Angle between μ in Υ CM frame and Υ boost direction
 - Solution Described by dN/d($\cos\theta^*$) $\propto 1 + \alpha \cos^2\theta^*$
- Acceptance sculpted by instrumental effects
 - Geometry
 - Muon p_T
 - Trigger turn-on

Method, cont.

- Solution Measure yield in bins of p_T and $\cos\theta^*$
 - DØ: fit mass distributions
 - CDF: side-band subtraction
- Use templates for transverse (α=1) and longitudinal (α=-1) decay distributions to fit data

Fit parameter:

$$\eta \equiv \frac{\sigma_L}{\sigma_T + \sigma_L} = \frac{1 - \alpha}{3 + \alpha}$$

Large $\Upsilon \rightarrow \mu^+ \mu^-$ Samples

CDF

- 2.9 fb⁻¹
- 🧶 83,000 Υ(1S) candidates
- ୬ |y|<0.6
- Resolve 3 peaks

⊌ DØ

- I.3 fb⁻¹
- ❷ |y|<1.8
- Yields of peaks extracted from fit

Monte Carlo Derived Templates

- Reconstruct like data
 - Includes all detector effects
 - No efficiency corrections to data
 - Requires good MC tuning

CDF: $\Upsilon(1S) \rightarrow \mu^+ \mu^-$ Mass Fits

Fits in p_T bins Shape used when subdividing into cosθ* bins

28 May 2010

Template Fits: CDF

http://www-cdf.fnal.gov/physics/new/bottom/090903.blessed-Upsilon1S-polarization/blessed_plots.html

Large cosθ* bins with sensitivity to differences between polarizations suffer from acceptance limits

Systematic Uncertainties

Small

Dominated by

- Fitting/counting technique
- Trigger efficiency turn-on

Results: CDF

- NRQCD prediction has poor consistency with data
 - Theory band broad as a result in feed-down contributions

Results: DØ

Phys. Rev. Lett. 101, 182004 (2008)

 Comparisons to CDF Run I and to NRQCD and k_T-factorization models

28 May 2010

Comparison

CDF and DØ results largely inconsistent

- Use similar techniques
- Different rapidity regions
 - CDF: |y|<0.6
 - ♥ DØ: |y|<1.8</p>

CDF also agrees with Run I (77 pb⁻¹) result

28 May 2010

Conclusions

- Much progress
- The theoretical puzzle remains, and is joined by an experimental one
- Some Hints:
 - See P. Faccioli et al. hep-ph/1005.2855
 - More detailed angular analysis needed
 - Collins-Soper frame
 - Relative to production plane
 - Solution Include azimuthal as well as polar asymmetries $dN/d\Omega \propto 1 + \lambda_{\theta} cos^2\theta + \lambda_{\phi} sin^2\theta cos 2\phi + \lambda_{\theta\phi} sin 2\theta cos \phi$
 - Need comparisons in common rapidity range
- More data may bring resolution

28 May 2010

Outlook

Tevatron experiments now have ~7 fb⁻¹ on tape

CDF expanding analysis as well

- 2S and 3S
- Adding Collins-Soper frame
 - More appropriate for production polarization
- Investigating azimuthal asymmetry
- Information from Y isolation may also help discriminate between models

Outlook II: LHC

Good analysis for early data

- Atlas and CMS expect σ^{10} nb to tape for $\Upsilon \rightarrow \mu^{+}\mu^{-}$
- May be challenging to resolve peaks
- Same caveats about full angular analysis and common rapidity ranges apply

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.