THEORY OF HADRONIC B DECAYS

[GUIDO BELL]

UNIVERSITY OF BERN
UNIVERSITAT
ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

CAVEAT

IN 20-25 MINUTES I WILL NOT BE ABLE TO COVER ALL OF THE LATEST DEVELOPMENTS IN THIS WIDESPREAD FIELD.

AS I AM GOING TO DISCUSS CONCEPTUAL AS WELL AS PHENOMENOLOGICAL ASPECTS, THE PHENOMENOLOGICAL PART OF MY TALK WILL NECESSARILY BE SELECTIVE AND SHORT.

I APOLOGIZE FOR NOT COVERING YOUR FAVOURITE TOPIC(S)!

OUTLINE

THEORY

REVIEW OF QCDF / PQCD / SCET
RECENT DEVELOPMENTS: CHARMING PENGUINS
GLAUBER GLUONS IN PQCD
PERTURBATIVE CORRECTIONS IN QCDF

PHENOMENOLOGY

$$
\begin{array}{ll}
\text { TREE-DOMINATED DECAYS: } & B \rightarrow \pi \pi / \pi \rho / \rho \rho \\
\text { PENGUIN-DOMINATED DECAYS: } & B \rightarrow \pi K
\end{array}
$$

THEORY

Charmless hadronic B decays

Particularly rich laboratory to probe the nature of flavour-changing

$$
b \rightarrow u \bar{u} d / u \bar{u} s \quad b \rightarrow d \bar{q} q / s \bar{q} q
$$

quark transitions and to test the CKM mechanism of CP violation

The challenge: quantitative control over $\left\langle M_{1} M_{2}\right| Q_{i}|B\rangle$

Charmless hadronic B decays

Particularly rich laboratory to probe the nature of flavour-changing

$$
b \rightarrow u \bar{u} d / u \bar{u} s \quad b \rightarrow d \bar{q} q / s \bar{q} q
$$

quark transitions and to test the CKM mechanism of CP violation

The challenge: quantitative control over $\left\langle M_{1} M_{2}\right| Q_{i}|B\rangle$

Two complementary strategies:

- flavour symmetries (isospin, $\mathrm{SU}(3), \ldots$)
extract hadronic matrix elements from data
use approximate symmetries of QCD \Rightarrow relate strong decay amplitudes
- dynamical approaches
calculate hadronic matrix elements in QCD
exploit factorization in heavy quark limit $m_{b} \gg \Lambda_{Q C D}$
some additional insights from light-cone sum rules

Factorization

Exploit $m_{b} \gg \Lambda_{Q C D}$ to disentangle

- short-distance effects $\sim m_{b} \quad \Rightarrow \quad$ perturbatively calculable
- long-distance effects $\sim \Lambda_{Q C D} \quad \Rightarrow \quad$ universal hadronic parameters

This is not a model, but describes QCD in the well-defined limit $m_{b} \rightarrow \infty$

Why are there three different incarnations of factorization?

Factorization

Exploit $m_{b} \gg \Lambda_{Q C D}$ to disentangle

- short-distance effects $\sim m_{b} \quad \Rightarrow \quad$ perturbatively calculable
- long-distance effects $\sim \Lambda_{Q C D} \quad \Rightarrow \quad$ universal hadronic parameters

This is not a model, but describes QCD in the well-defined limit $m_{b} \rightarrow \infty$

Why are there three different incarnations of factorization?

Factorization of hard exclusive processes pioneered more than 30 years ago for $\pi \gamma^{*} \rightarrow \pi$

$$
\langle\pi| J|\pi\rangle \simeq \int d u d v T(u, v) \phi_{\pi}(u) \phi_{\pi}(v)
$$

[Brodsky, Lepage 79]
For charmless hadronic B decays expect

$$
\left\langle M_{1} M_{2}\right| Q_{i}|B\rangle \simeq \int d \omega d u d v T_{i}(\omega, u, v) \phi_{B}(\omega) \phi_{M_{1}}(v) \phi_{M_{2}}(u) \quad ?
$$

Problem: convolutions over ω and v diverge \Rightarrow not dominated by hard gluon exchange!?
but still: convolution over u finite $\quad \Rightarrow$ "colour transparency"

QCDF / pQCD / SCET

- QCD factorization

$$
\begin{aligned}
\left\langle M_{1} M_{2}\right| Q_{i}|B\rangle \simeq & F^{B M_{1}}(0) \int d u T_{i}^{\prime}(u) \phi_{M_{2}}(u) \\
& +\int d \omega d u d v T_{i}^{\prime \prime}(\omega, u, v) \phi_{B}(\omega) \phi_{M_{1}}(v) \phi_{M_{2}}(u)
\end{aligned}
$$

convolutions are finite, endpoint divergence hidden in $F^{B M_{1}}$ which is not factorized

QCDF / pQCD / SCET

- QCD factorization

$$
\begin{aligned}
\left\langle M_{1} M_{2}\right| Q_{i}|B\rangle \simeq & F^{B M_{1}}(0) \int d u T_{i}^{\prime}(u) \phi_{M_{2}}(u) \\
& +\int d \omega d u d v T_{i}^{\prime \prime}(\omega, u, v) \phi_{B}(\omega) \phi_{M_{1}}(v) \phi_{M_{2}}(u)
\end{aligned}
$$

convolutions are finite, endpoint divergence hidden in $F^{B M_{1}}$ which is not factorized

- perturbative QCD
[Keum, Li, Sanda 00]
$\left\langle M_{1} M_{2}\right| Q_{i}|B\rangle \simeq \int d \omega d u d v d k_{i \perp} T_{i}\left(\omega, u, v, k_{i \perp}\right) \phi_{B}\left(\omega, k_{1 \perp}\right) \phi_{M_{1}}\left(v, k_{2 \perp}\right) \phi_{M_{2}}\left(u, k_{3 \perp}\right)$
+ Sudakov resummation \Rightarrow endpoint divergence smeared out by transverse momenta

QCDF / pQCD / SCET

- QCD factorization

$$
\begin{aligned}
\left\langle M_{1} M_{2}\right| Q_{i}|B\rangle \simeq & F^{B M_{1}}(0) \int d u T_{i}^{\prime}(u) \phi_{M_{2}}(u) \\
& +\int d \omega d u d v T_{i}^{\prime \prime}(\omega, u, v) \phi_{B}(\omega) \phi_{M_{1}}(v) \phi_{M_{2}}(u)
\end{aligned}
$$

convolutions are finite, endpoint divergence hidden in $F^{B M_{1}}$ which is not factorized

- perturbative QCD
[Keum, Li, Sanda 00]
$\left\langle M_{1} M_{2}\right| Q_{i}|B\rangle \simeq \int d \omega d u d v d k_{i \perp} T_{i}\left(\omega, u, v, k_{i \perp}\right) \phi_{B}\left(\omega, k_{1 \perp}\right) \phi_{M_{1}}\left(v, k_{2 \perp}\right) \phi_{M_{2}}\left(u, k_{3 \perp}\right)$
+ Sudakov resummation \Rightarrow endpoint divergence smeared out by transverse momenta
- Soft-collinear effective theory

SCET = QCDF: simply EFT vs diagrammatical formulation
BPRS $\neq \mathrm{BBNS}$: phenomenological implementation for $B \rightarrow M_{1} M_{2}$ quite different issues: $F^{B M_{1}}$ traded for $\xi^{B M_{1}}, \alpha_{s}\left(\sqrt{\lambda m_{b}}\right)$ non-perturbative, \ldots (minor)
long-distance charm loops, zero-bin subtractions (major)

Long-distance charm loops

Old charming penguin story - two different questions:

- power-suppressed but numerically important
\Rightarrow not supported by light-cone sum rule estimate
[Colangelo et al. 89; Ciuchini et al. 97+]
[Khodjamirian, Mannel, Melic 03]
- leading power spoiling factorization does the threshold region with a non-relativistic $c \bar{c}$ pair require a special treatment?

Recent work addresses second question
(a) $e^{+} e^{-} \rightarrow$ hadrons

$\int d q^{2} \ldots \operatorname{lm} \Pi\left(q^{2}\right)$
(b) $B \rightarrow X_{s} \ell^{+} \ell^{-}$

$\int d q^{2} \ldots\left|\Pi\left(q^{2}\right)\right|^{2}$
(c) charming penguins

$\int d q^{2} \ldots \Pi\left(q^{2}\right)$
\Rightarrow global quark-hadron duality holds in (a) and (c), but breaks down in (b)
\Rightarrow no special treatment required in (c), long-distance charm loops are power-suppressed

Glauber gluons in PQCD

It has been realized recently that k_{T}-factorization breaks down in $p p \rightarrow h_{1} h_{2} X$ at high p_{T}

- problem related to a peculiar mode: Glauber gluons
- effect is a non-universal long-distance contribution \Rightarrow ruins k_{T}-factorization
- problem not present in collinear factorization

Important for pQCD approach to non-leptonic B decays

- confirmed that problem exists \Rightarrow modification of pQCD approach
- claimed that it leads to an universal soft factor $e^{i S} \Rightarrow k_{T}$-factorization still holds
- $e^{i S}$ from fit to $\operatorname{Br}\left(\pi^{0} \pi^{0}\right) \Rightarrow$ large complex $C \quad \Rightarrow$ "solves" $\pi \pi / \pi K$ puzzles

Issues: operator definition of soft factor?

- if universal why associated to π but not to ρ ? \Rightarrow would worsen $\operatorname{Br}\left(\rho^{0} \rho^{0}\right)$
- at present I consider this rather as a fit than as a dynamical explanation

Perturbative corrections in QCDF

Ongoing effort to compute NNLO corrections in QCDF

$$
\left\langle M_{1} M_{2}\right| Q_{i}|B\rangle \simeq F^{B M_{1}} T_{i}^{\prime} \otimes \phi_{M_{2}}+T_{i}^{\prime \prime} \otimes \phi_{B} \otimes \phi_{M_{1}} \otimes \phi_{M_{2}}
$$

strong phases $\sim \mathcal{O}\left(\alpha_{s}\right) \quad \Rightarrow \quad$ NNLO is first correction for direct CP asymmetries!

Status	2-loop vertex corrections (T_{i}^{\prime})	1-loop spectator scattering ($T_{i}^{\prime \prime}$)
Trees	[GB 07, 09] [Beneke, Huber, Li 09	[Beneke, Jäger 05] [Kivel 06] [Pilipp 07]
Penguins	in progress	[Beneke, Jäger 06] [Jain, Rothstein, Stewart 07]

- factorization found to hold (as expected) at highly non-trivial order
- direct CP asymmetries not yet available at NNLO
- first NNLO results for CP-averaged branching ratios of tree-dominated decays
[GB, Pilipp 09; Beneke, Huber, Li 09]

Summary of theory part

	BBNS (QCDF)	pQCD	BPRS (SCET)
$\alpha_{s}\left(\sqrt{\Lambda m_{b}}\right.$)	perturbative	perturbative	non-perturbative
charm loops	perturbative (small phase)	perturbative (small phase)	non-perturbative (large phase from fit to data)
weak annihilation (power correction)	non-perturbative (crude model, arbitrary phase)	perturbative (large phase)	perturbative (with zero bins, small phase)
strong phases	generically small $\left(\sim \alpha_{s}, 1 / m_{b}\right)$	can be sizeable (annihilation, Glaubers)	charm be sizeable
perturbative calculation	partially NNLO		
hadronic input	prom lattice + QCD sum rules	NLO from QCD sum rules + data, model $\phi_{B}(x, b)$	from QCD sum rules + data, model $\xi_{J}^{B M}(z)$

- theory predictions for direct CP asymmetries can unfortunately differ a lot!
- measurements (even bounds) of pure annihilation decays highly appreciated:
$B_{d} \rightarrow K^{-} K^{+}, B_{s} \rightarrow \pi \pi / \pi \rho / \rho \rho$

PHENOMENOLOGY

$B \rightarrow \pi \pi / \pi \rho / \rho \rho$

Large $\operatorname{Br}\left(\pi^{0} \pi^{0}\right)=(1.55 \pm 0.19) \cdot 10^{-6}$ challenging for dynamical approaches

- seems to indicate large $C / T \quad \Rightarrow \quad$ interesting in view of πK puzzle
- Babar: $(1.83 \pm 0.21 \pm 0.13) \cdot 10^{-6} \quad$ Belle: $(1.1 \pm 0.3 \pm 0.1) \cdot 10^{-6}$
\Rightarrow reconsider in the light of NNLO calculation in QCDF and $\pi \rho / \rho \rho$ data

Tree amplitudes now completely determined to NNLO

$$
\begin{aligned}
T \sim \alpha_{1}(\pi \pi)= & {[1.008] v_{0}+[0.022+0.009 i] v_{1}+[0.024+0.026 i] v_{2} } \\
& -[0.014]]_{S_{1}}-[0.016+0.012 i]_{S_{2}}-[0.008]_{1 / m_{b}} \\
= & 1.015_{-0.029}^{0.020}+\left(0.023_{-0.015}^{+0.015}\right) i \\
C \sim \alpha_{2}(\pi \pi)= & {[0.224] v_{0}-[0.174+0.075 i] v_{1}-[0.029+0.046 i] v_{2} } \\
& +[0.084]_{s_{1}}+[0.037+0.022 i] s_{2}+[0.052]_{1 / m_{b}} \\
= & 0.194_{-0.095}^{+0.130}-\left(0.099_{-0.056}^{+0.057}\right) i
\end{aligned}
$$

- individual NNLO corrections quite significant, but substantial cancellations
- $\operatorname{Re}\left(\alpha_{2}\right)$ still uncertain, mainly due to poor knowledge of $\lambda_{B}^{-1}=\int \frac{d \omega}{\omega} \phi_{B}(\omega)$

CP-averaged branching ratios

Mode	QCDF	B	Experiment
$\pi^{-} \pi^{0}$	$6.22_{-2.01}^{+2.37}$	5.46	$5.59_{-0.40}^{+0.41}$
$\rho_{L}^{-} \rho_{L}^{0}$	$21.0_{-7.3}^{+8.5}$	21.3	$22.5_{-1.9}^{+1.9}$
$\pi^{-} \rho^{0}$	$9.34_{-3.23}^{+4.00}$	10.4	$8.3_{-1.3}^{+1.2}$
$\pi^{0} \rho^{-}$	$15.1_{-5.0}^{+5.7}$	11.9	$10.9_{-1.5}^{+1.4}$
$\pi^{+} \pi^{-}$	$8.96_{-3.32}^{+3.78}$	5.21	$5.16_{-0.22}^{+0.22}$
$\pi^{0} \pi^{0}$	$0.35_{-0.21}^{+0.37}$	0.63	$1.55_{-0.19}^{+0.19}$
$\pi^{+} \rho^{-}$	$22.8_{-8.0}^{+9.1}$	13.2	$15.7_{-1.8}^{+1.8}$
$\pi^{-} \rho^{+}$	$11.5_{-4.3}^{+5.1}$	8.41	$7.3_{-1.2}^{+1.2}$
$\pi^{ \pm} \rho^{\mp}$	$34.3_{-10.0}^{+11.5}$	21.6	$23.0_{-2.3}^{+2.3}$
$\pi^{0} \rho^{0}$	$0.52_{-0.42}^{+0.76}$	1.64	$2.0_{-0.5}^{+0.5}$
$\rho_{L}^{+} \rho_{L}^{-}$	$30.3_{-11.2}^{+12.9}$	22.3	$23.6_{-3.2}^{+3.2}$
$\rho_{L}^{0} \rho_{L}^{0}$	$0.44_{-0.37}^{+0.66}$	1.33	$0.69_{-0.30}^{+0.30}$

- theo. uncertainties highly correlated ($\left.F^{B M_{1}},\left|V_{u b}\right|\right)$
- colour-suppressed modes $\pi^{0} \pi^{0} / \pi^{0} \rho^{0} / \rho^{0} \rho^{0}$ rather uncertain (λ_{B} and $1 / m_{b}$)
- $\rho^{0} \rho^{0}$ and $\pi^{0} \rho^{0}$ (with smaller penguins) fit better than $\pi^{0} \pi^{0}$
- preference for enhanced colour-suppressed amplitude

B: enhanced colour-suppressed amplitude with

$$
\lambda_{B}=0.2, F_{+}^{B \pi}=0.21 \text { and } A_{0}^{B \rho}=0.27
$$

Testing factorization

Eliminate dependence on $F^{B M_{1}}$ and $\left|V_{u b}\right|$ via

$$
\mathcal{R}_{M_{3}}\left(M_{1} M_{2}\right)=\frac{\Gamma\left(B \rightarrow M_{1} M_{2}\right)}{d \Gamma\left(B \rightarrow M_{3} \ell \nu\right) /\left.d q^{2}\right|_{q^{2}=0}}
$$

\Rightarrow requires measurement of semileptonic decay spectrum and extrapolation to $q^{2}=0$

$$
B \rightarrow \pi \ell \nu
$$

[Babar 07]
$\Rightarrow \quad\left|V_{u b}\right| F_{+}^{B \pi}(0)=(9.1 \pm 0.7) \cdot 10^{-4}$
$B \rightarrow \rho \ell \nu$

[Babar 05; Belle 07; CLEO 07; figure from Flynn et al 08]
currently insufficient to extract $\left|V_{u b}\right| A_{0}^{B \rho}(0)$

Testing factorization

Eliminate dependence on $F^{B M_{1}}$ and $\left|V_{u b}\right|$ via

$$
\mathcal{R}_{M_{3}}\left(M_{1} M_{2}\right)=\frac{\Gamma\left(B \rightarrow M_{1} M_{2}\right)}{d \Gamma\left(B \rightarrow M_{3} \ell \nu\right) /\left.d q^{2}\right|_{q^{2}=0}}
$$

Mode	QCDF	B	Experiment
$\mathcal{R}_{\pi}\left(\pi^{-} \pi^{0}\right)$	$0.70_{-0.08}^{+0.12}$	0.95	$0.81_{-0.14}^{+0.14}$
$\mathcal{R}_{\rho}\left(\rho_{L}^{-} \rho_{L}^{0}\right)$	$1.91_{-0.23}^{+0.32}$	2.38	n.a.
$\mathcal{R}_{\rho}\left(\pi^{-} \rho^{0}\right)$	$0.85_{-0.14}^{+0.22}$	1.16	n.a.
$\mathcal{R}_{\pi}\left(\pi^{0} \rho^{-}\right)$	$1.71_{-0.24}^{+0.27}$	2.07	$1.57_{-0.32}^{+0.32}$
$\mathcal{R}_{\pi}\left(\pi^{+} \pi^{-}\right)$	$1.09_{-0.20}^{+0.22}$	0.97	$0.80_{-0.13}^{+0.13}$
$\mathcal{R}_{\pi}\left(\pi^{+} \rho^{-}\right)$	$2.77_{-0.31}^{+0.32}$	2.46	$2.43_{-0.47}^{+0.47}$
$\mathcal{R}_{\rho}\left(\pi^{-} \rho^{+}\right)$	$1.12_{-0.14}^{+0.20}$	1.01	n.a.
$\mathcal{R}_{\rho}\left(\rho_{L}^{+} \rho_{L}^{-}\right)$	$2.95_{-0.35}^{+0.37}$	2.68	n.a.
$R\left(\rho_{L}^{-} \rho_{L}^{0} / \rho_{L}^{+} \rho_{L}^{-}\right)$	$0.65_{-0.11}^{+0.16}$	0.89	$0.89_{-0.14}^{+0.14}$
$R\left(\pi^{-} \pi^{0} / \pi^{+} \pi^{-}\right)$	$0.65_{-0.14}^{+0.19}$	0.98	$1.01_{-0.09}^{+0.09}$

- $\pi^{-} \pi^{0} / \rho^{-} \rho^{0}$ provide clean access to $|T+C|$
- good overall description (in particular for small λ_{B})
- only exception $\operatorname{Br}\left(\pi^{0} \pi^{0}\right)$ which has a substantial penguin contribution and large theo. uncertainties
B : enhanced colour-suppressed amplitude with

$$
\lambda_{B}=0.2, F_{+}^{B \pi}=0.21 \text { and } A_{0}^{B \rho}=0.27
$$

The $B \rightarrow \pi K$ puzzle

Since 2006 branching ratios do no longer look puzzling

	QCDF	Experiment
R_{C}	$1.15_{-0.18}^{+0.21}$	1.12 ± 0.07
R_{n}	$1.16_{-0.20}^{+0.24}$	1.02 ± 0.07

$$
R_{c}=2 \frac{\Gamma\left(B^{-} \rightarrow \pi^{0} K^{-}\right)}{\Gamma\left(B^{-} \rightarrow \pi^{-} \bar{K}^{0}\right)} \quad R_{n}=\frac{1}{2} \frac{\Gamma\left(\bar{B}_{d}^{0} \rightarrow \pi^{+} K^{-}\right)}{\Gamma\left(\bar{B}_{d}^{0} \rightarrow \pi^{0} \bar{K}^{0}\right)}
$$

But direct CP asymmetries look somewhat odd

$A_{C P}[\%]$	QCDF	Experiment
$\pi^{0} K^{-}$	$9.4_{-14.6}^{+12.1}$	$5.0_{-2.5}^{+2.5}$
$\pi^{+} K^{-}$	$5.6_{-15.1}^{+12.2}$	$-9.8_{-1.1}^{+1.2}$
$\Delta A_{C P}$	$3.8_{-2.7}^{+2.9}$	$14.8_{-2.8}^{+2.7}$

$\Delta A_{C P}$ can be predicted quite precisely
\Rightarrow could be NP but also large + complex
C / T beyond factorization

More robust SM test given by isospin sum rule

$A_{C P}[\%]$	Sum rule	Experiment
$\pi^{0} \bar{K}^{0}$	-0.15 ± 0.04	-0.01 ± 0.10

$$
A_{C P}\left(\pi^{+} K^{-}\right)+A_{C P}\left(\pi^{-} \bar{K}^{0}\right) \simeq A_{C P}\left(\pi^{0} K^{-}\right)+A_{C P}\left(\pi^{0} \bar{K}^{0}\right)
$$

\Rightarrow predicts large $A_{C P}\left(\pi^{0} \bar{K}^{0}\right)$, but discrimination of NP requires much more data

Mixing-induced CP asymmetry

Naive expectation neglecting doubly Cabibbo-suppressed terms

$$
S_{\pi^{0} K_{S}} \simeq \sin (2 \beta)_{J / \psi K_{S}}=0.681 \pm 0.025 \quad S_{\pi^{0} K_{S}} \stackrel{\exp }{=} 0.57 \pm 0.17
$$

"tree pollution" estimated to increase $S_{\pi^{0} K_{S}}$ by 0.04-0.12
[Beneke 05; Williamson, Zupan 06]

Isospin relations reveal some tension with πK data

uses two $\mathrm{SU}(3)$ relations $\Rightarrow R_{T+C}$ and R_{q} SU(3) breaking estimated with QCDF
$\Rightarrow S_{\pi^{0} K_{S}}=\left.\left.\left.\left.0.99_{-0.08}^{+0.01}\right|_{\exp -0.001} ^{+0.000}\right|_{R_{T+C}-0.11}\right|_{R_{q}-0.07} ^{+0.00}\right|_{\gamma}$
uncertainty reducible by lattice determination of $F^{B K} / F^{B \pi}$

Additional information on πK puzzle can be obtained from $\pi K^{*} / \rho K$ sector
\Rightarrow at present data still insufficient, but expect sizeable direct CP asymmetries
[Chiang, London 09; Gronau, Pirjol, Zupan 10]

Conclusion

Factorization is based on a twofold expansion in $\alpha_{s}\left(m_{b}\right)$ and $1 / m_{b}$

- perturbative calculations are reaching NNLO precision
- unfortunately no similar progress (yet) on power corrections

Satisfactory overall description of $\pi \pi / \pi \rho / \rho \rho$ branching ratios

- large $\operatorname{Br}\left(\pi^{0} \pi^{0}\right)$ still puzzling, but not necessarily a failure of factorization
- $A_{C P}\left(\pi^{+} \pi^{-}\right)$from Belle also somewhat large, but $\sim 2 \sigma$ above Babar value

The $B \rightarrow \pi K$ puzzle continues to be exciting

- depends crucially on experimental progress on $\pi^{0} \bar{K}^{0}$ observables

There are many interesting topics which I could not discuss

- B_{s} decays, $B \rightarrow V V$ polarization puzzle, B decays with scalars, baryons, 3-body, \ldots

