Mauro Mezzetto, Istituto Nazionale di Fisica Nucleare, Sezione di Padova

" Experimental perspectives of neutrino oscillation physics"

- Today and near future
 - θ_{13} at the accelerators
 - θ₁₃ at the reactors
- Next: leptonic CP violation and mass hierarchy
 - Super Beams
 - Beta Beams
 - Neutrino Factories

Neutrino Mixing Matrix (PMNS)

Solar+Atmospherics indicate a quasi bi-maximal mixing matrix, **VERY DIFFERENT** from CKM matrix !

$$U_{MNSP} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

 $\theta_{13} \to 0 \quad \Rightarrow \quad \mbox{The 3x3 mixing matrix becomes a trivial product of two 2x2 matrixes.}$

 $\begin{array}{l} \theta_{13} \text{ drives } \nu_{\mu} \rightarrow \nu_{e} \text{ subleading transitions } \Rightarrow \\ & \text{the necessary milestone for any subsequent search:} \\ & \text{neutrino mass hierarchy and leptonic CP searches.} \end{array}$

Mauro Mezzetto (INFN Padova)

Experimental perspectives of neutrino physics

Shopping list for future experiments

Status of θ_{13}

θ_{13} at Reactors

$1 - P_{\bar{\nu}_e \bar{\nu}_e} \simeq \sin^2 2\theta_{13} \, \sin^2(\Delta m_{31}^2 L/4E) \, + \, (\Delta m_{21}^2/\Delta m_{31}^2)^2) \, (\Delta m_{31}^2 L/4E)^2 \cos^4 \theta_{13} \, \sin^2 2\theta_{12}$

- Direct connection with θ_{13} , no interference with $\delta_{\rm CP}$ and ${\rm sign}(\Delta m_{23}^2)$.
- No way to directly measure leptonic CP violation and mass hierarchy.
- Truly complementary to the accelerator experiments.
- Disappearance experiments: systematic errors dominate over statistics.

Reactor Experiments

CHOOZ Result $R = 1.01 \pm 2.8\%(\text{stat}) \pm 2.7\%(\text{syst})$.

Goal:

- Improve by at least a factor 5 the statistical error (25 times more neutrinos):
 - bigger detectors than CHOOZ (fiducial: 5 ton)
 - more stable in time (CHOOZ took data for 8761.7 h, then it had to stop because of strong deterioration of the liquid scintillator, due to the diluted gadolinium).
- Improve by at lease a factor 5 systematic errors:
 - Add a close detector
 - Design of the detector such to reduce backgrounds and systematics associated to the definition of the fiducial volume.

Nuclear reactors are a very intense source of $\overline{\nu}_e$ from β decays of the fission fragments.

Every fission reaction emits about 200 MeV of energy and 6 $\overline{\nu}_e$. \Downarrow Flux $\sim 2 \cdot 10^{20} \ \overline{\nu}_e \ s^{-1} \ \text{GWatt}^{-1}$, isotropic, $\langle E(\overline{\nu}_e) \rangle \simeq 0.5 \ \text{MeV}$.

Oscillation experiments look for $\overline{\nu}_e$ disappearance at different baselines:

• $L = O(1 \text{km}) \Rightarrow$ atmospheric regime: Double Chooz, RENO, Daya Bay.

• $L = O(150 \text{km}) \Rightarrow$ solar regime: Kamland

The three players

From M.M. and T. Schwetz, arXiv:1003.5800

Setup	P_{Th} [GW]	<i>L</i> [m]	$m_{ m Det}$ [t]	Events/year	Bck/day	Start
Daya Bay	17.4	1700	80	$10 \cdot 10^4$	0.4	12/2011
Double Chooz	8.6	1050	8.3	$1.5\cdot 10^4$	3.6	6/2010
RENO	16.4	1400	15.4	$3 \cdot 10^4$	2.6	12/2010

Double Chooz

2 cores - 1 site - 8.5 GW_{th} 1 near position, 1 far - target: $2 \times 8.3 t$ Civil engineering - 1 near lab ~ Depth 40 m, Ø 6 m - 1 available lab Statistics (including ϵ) - far: ~ 40 evts/day - near: ~ 400 evts/day Systematics - reactor : ~ 0.2% - detector : ~ 0.5% Backgrounds - σ_{tzb} at far site: ~ 1% - σ_{tzb} at near site: ~ 0.5%

Planning

- 1. Far detector only
 - Sensitivity (1.5 ans) ~ 0.06
- 2. Far + Near sites
 - available from 2010
 - Sensitivity (3 years) ~ 0.025

Daya Bay

RENO

Mauro Mezzetto (INFN Padova)

Experimental perspectives of neutrino physics

Reactors systematic business

Error Description	CHOOZ Double Chooz		Daya Bay			
·					No R&D	R&D
	Absolute	Absolute	Relative	Absolute	Relative	Relative
Reactor						
Production cross section	1.90 %	1.90 %		1.90 %		
Core powers	0.70 %	2.00 %		2.00 %		
Energy per fission	0.60 %	0.50 %		0.50 %		
Solid angle/Bary. displct.			0.07 %		0.08 %	0.08 %
Detector						
Detection cross section	0.30 %	0.10 %		0.10 %		
Target mass	0.30 %	0.20 %	0.20 %	0.20 %	0.20 %	0.02 %
Fiducial volume	0.20 %					
Target free H fraction	0.80 %	0.50 %		?	0.20 %	0.10 %
Dead time (electronics)	0.25 %					
Analysis (paticle id.)						
e ⁺ escape (D)	0.10 %					
e ⁺ capture (C)						
e ⁺ identification cut (E)	0.80 %	0.10 %	0.10 %			
n escape (D)	0.10 %					
n capture (% Gd) (C)	0.85 %	0.30 %	0.30 %	0.10 %	0.10 %	0.10 %
n identification cut (E)	0.40 %	0.20 %	0.20 %	0.20 %	0.20 %	0.10 %
$\overline{\nu}_{e}$ time cut (T)	0.40 %	0.10 %	0.10 %	0.10 %	0.10 %	0.03 %
$\overline{\nu}_{e}$ distance cut (D)	0.30 %					
unicity (n multiplicity)	0.50 %				0.05 %	0.05 %
Total	2.72 %	2.88 %	0.44 %	2.82 %	0.39 %	0.20 %

G. Mention, T. Lasserre and D. Motta, arXiv:0704.0498 [hep-ex].

Sub leading $u_{\mu} - u_{e}$ oscillations

$$\begin{split} p(\nu_{\mu} \to \nu_{e}) &= 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\frac{\Delta m_{13}^{2}L}{4E} \times \left[1 \pm \frac{2a}{\Delta m_{13}^{2}}(1 - 2s_{13}^{2})\right] \qquad \theta_{13} \text{ driv} \\ &+ 8c_{13}^{2}s_{12}s_{13}s_{23}(c_{12}c_{23}\cos\delta - s_{12}s_{13}s_{23})\cos\frac{\Delta m_{23}^{2}L}{4E}\sin\frac{\Delta m_{13}^{2}L}{4E}\sin\frac{\Delta m_{12}^{2}L}{4E} \text{ CPert} \\ &\mp 8c_{13}^{2}c_{12}c_{23}s_{12}s_{13}s_{23}\sin\delta\sin\frac{\Delta m_{23}^{2}L}{4E}\sin\frac{\Delta m_{13}^{2}L}{4E}\sin\frac{\Delta m_{12}^{2}L}{4E} \text{ CPodd} \\ &+ 4s_{12}^{2}c_{13}^{2}\{c_{13}^{2}c_{23}^{2} + s_{12}^{2}s_{23}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{23}s_{13}\cos\delta\}\sin\frac{\Delta m_{12}^{2}L}{4E} \text{ solar driven} \\ &\mp 8c_{12}^{2}s_{13}^{2}s_{23}^{2}\cos\frac{\Delta m_{23}^{2}L}{4E}\sin\frac{\Delta m_{13}^{2}L}{4E}(1 - 2s_{13}^{2}) \text{ matter effect (CP odd)} \end{split}$$

 $\begin{array}{ll} \theta_{13} & {\rm discovery \ requires \ a} \\ {\rm signal} & \left(\infty & {\rm sin}^2 \, 2 \theta_{13} \right) \\ {\rm greater \ than \ the \ solar} \\ {\rm driven \ probability} \end{array}$

 $\begin{array}{l} \text{Leptonic CP discovery requires} \\ \textbf{A}_{CP} = \frac{P(\nu_{\mu} \rightarrow \nu_{e}) - P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})}{P(\nu_{\mu} \rightarrow \nu_{e}) + P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})} \neq 0 \end{array}$

The two players

- T2K Started 12/2009, at J-Parc, Japan. No result yet.
- NO ν A scheduled to start in 2013

Horizontal lines: regions where $P(
u_{\mu}
ightarrow
u_{e}) \geq 0.5$

Off Axis Neutrino Beams.

The T2K Experiment

Experimental apparatus and neutrino beam

T2K experiment: the neutrino beam line

The Close Detector Station

Mauro Mezzetto (INFN Padova)

Experimental perspectives of neutrino physics

FPCP 2010, Torino, 28/05/10 19

19 / 46

The Close Detector ND280

- Near off-axis detector located at 280 m downstream of the target
- Consists of 5 subdetectors:
 - → Pi-zero detector (PØD)
 - measures NCπ⁰ interactions
 - Tracker: fine-grained detector (FGD) and time projection chambers (TPC)
 - measures CC interactions
 - Electromagnetic calorimeter (ECAL)
 - detects EM activities coming from PØD/Tracker
 - Side muon range detector (SMRD)
 - → All detectors housed in UA1/NOMAD magnet: B-field = 0.2 T
 - → 0.8M ν_{μ} and 16k ν_{e} interactions per ton after 0.75kW x 5yr accumulation

The Far Detector: Super-Kamiokande

History of Super-Kamiokande detector

Mauro Mezzetto (INFN Padova)

Experimental perspectives of neutrino physics

SuperKamiokande detector

Mauro Mezzetto (INFN Padova)

Experimental perspectives of neutrino physics

FPCP 2010, Torino, 28/05/10 22 / 46

The NOvA Experiment

28 Institutions 180 scientists and engineers

- NOvA is a second generation experiment on the NuMI beamline which is optimized for the detection of v_µ→v_e and v_µ→v_e oscillations
- NOvA is:
 - An upgrade of the NuMI beam intensity from 400 kW to 700 kW
 - A 15 kt "totally active" tracking liquid scintillator calorimeter sited 14 mrad off the NuMI beam axis at a distance of 810 km
 - A 215 ton near detector identical to the far detector sited 14 mrad off the NuMI beam axis at a distance of 1 km

NOvA plans to run 3 years in neutrino mode, 3 years in anti-neutrino mode operating NuMI at 700 kW.

- NOvA will search for v_{μ} v_{e} oscillations down to 1% oscillation probability at 90% CL
- Of the next generation NOvA uniquely provides data on the neutrino mass hierarchy and CP violating phase delta.
- Using quasi-elastic channel, NOvA will make ~1% measurements of v_{μ} v_{τ} oscillations

NOvA Status

- NOvA has passed Department of Energy CD2 and 3a reviews and is ready to start construction. Progress slowed by lack of FY08 funding, but NOvA construction is funded in FY09 budget.
- Schedule
 - April 2009: Notice to proceed on construction at far detector site
 - October 2009: Complete Department of Energy CD3 process
 - Spring 2010: Begin operation of prototype near detector in NuMI beam at Fermilab.
 - May 2011: Far detector enclosure completed
 - August 2012: 2.5kt of far detector operational
 - December 2013: Completed far detector operational

Status after this generation of LBL experiments

Time Evolution

Measuring Leptonic CP violation

LCPV asymmetry at the first oscillation maximum, $\delta = 1$, Error curve: dependence of the statistical+systematic (2%) computed for a beta beam the fixed energy $E_{IV} = 0.4$ GeV, L = 130 km.

Measuring Leptonic CP violation

LCPV asymmetry at the first oscillation maximum, $\delta~=~$ 1, Error

curve: dependence of the statistical+systematic (2%) computed for a

beta beam the fixed energy E_{ν} = 0.4 GeV, L = 130 km.

 The detection of such asymmetry is an evidence of Leptonic CP violation only in absence of competitive processes (i.e. matter effects, see following slides) ⇒ "short" Long Baseline experiments

Measuring Leptonic CP violation

LCPV asymmetry at the first oscillation maximum, $\delta~=$ 1, Error

curve: dependence of the statistical+systematic (2%) computed for a

beta beam the fixed energy $E_{
u}$ = 0.4 GeV, L = 130 km.

- The detection of such asymmetry is an evidence of Leptonic CP violation only in absence of competitive processes (i.e. matter effects, see following slides) ⇒ "short" Long Baseline experiments
- Statistics and systematics play different roles at different values of $\theta_{13} \Rightarrow$ impossible to optimize the experiment without a prior knowledge of θ_{13}
- Contrary to the common belief, the highest values of θ_{13} are not the easiest condition for LCPV discovery

Mauro Mezzetto (INFN Padova)

An internal degree of freedom of neutrino masses is the sign of Δm^2_{31} : $\mathrm{sign}(\Delta m^2_{23}).$

This parameter decides how mass eigenstates are coupled to flavor eigenstates with important consequencies to direct neutrino mass and double beta decay experiments.

$$P_{\theta_{13}} = \sin^2(2\theta_{13})\sin\theta_{23}^2\sin^2((\hat{A}-1)\hat{\Delta})/(\hat{A}-1)^2;$$

$$p_{\sin\delta} = \alpha \sin(2\theta_{13})\zeta \sin\delta \sin(L\hat{\Delta})\sin(\hat{A}\hat{\Delta})\sin((1-\hat{A})\hat{\Delta})/((1-\hat{A})\hat{A});$$

$$p_{\cos\delta} = \alpha \sin(2\theta_{13})\zeta \cos\delta \cos\hat{\Delta}\sin(\hat{A}\hat{\Delta})\sin(1-\hat{A}\hat{\Delta})/((1-\hat{A})\hat{A});$$

$$p_{\text{solar}} = \alpha^2\cos\theta_{23}^2\sin^22\theta_{12}\sin^2(\hat{A}\hat{\Delta})/\hat{A}^2;$$

$$\begin{split} \alpha &= \operatorname{Abs}(\Delta m_{21}^2 / \Delta m_{31}^2); \ \hat{\Delta} = \frac{\iota \Delta m_{31}^2}{4E} \zeta = \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \\ \hat{\boldsymbol{A}} &= \pm \boldsymbol{a} / \Delta m_{31}^2; \ \boldsymbol{a} = 7.6 \cdot 10^{-5} \rho \cdot E_{\nu} (\text{GeV}) \quad \rho = \text{matter density } (\text{g cm}^{-3}) \\ \text{The } \hat{\boldsymbol{A}} \text{ term changes sign with } \operatorname{sign}(\Delta m_{23}^2) \end{split}$$

Matter effects require long "long baselines"

$$\begin{aligned} P_{\theta_{13}} &= \sin^2(2\theta_{13})\sin\theta_{23}^2\sin^2((\hat{A}-1)\hat{\Delta})/(\hat{A}-1)^2;\\ p_{\sin\delta} &= \alpha\sin(2\theta_{13})\zeta\sin\delta\sin(L\hat{\Delta})\sin(\hat{A}\hat{\Delta})\sin(((1-\hat{A})\hat{\Delta})/(((1-\hat{A})\hat{A});\\ p_{\cos\delta} &= \alpha\sin(2\theta_{13})\zeta\cos\delta\cos\hat{\Delta}\sin(\hat{A}\hat{\Delta})\sin((1-\hat{A}\hat{\Delta})/(((1-\hat{A})\hat{A});\\ p_{\rm solar} &= \alpha^2\cos\theta_{23}^2\sin^22\theta_{12}\sin^2(\hat{A}\hat{\Delta})/\hat{A}^2; \end{aligned}$$

$$\begin{split} \alpha &= \operatorname{Abs}(\Delta m_{21}^2 / \Delta m_{31}^2); \ \hat{\Delta} = \frac{L \Delta m_{31}^2}{4E} \ \zeta = \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \\ \hat{\boldsymbol{A}} &= \pm \boldsymbol{a} / \Delta m_{31}^2; \ \boldsymbol{a} = 7.6 \cdot 10^{-5} \rho \cdot E_{\nu} (GeV) \quad \rho = \text{matter density } (\text{g cm}^{-3}) \\ \text{The } \hat{\boldsymbol{A}} \text{ term changes sign with } \operatorname{sign}(\Delta m_{23}^2) \end{split}$$

Matter effects require long "long baselines" $E_{ u} = 0.35 { m GeV} \ L \simeq 130 \ { m km}$

$$\begin{aligned} P_{\theta_{13}} &= \sin^2(2\theta_{13})\sin\theta_{23}^2\sin^2((\hat{A}-1)\hat{\Delta})/(\hat{A}-1)^2;\\ p_{\sin\delta} &= \alpha\sin(2\theta_{13})\zeta\sin\delta\sin(L\hat{\Delta})\sin(\hat{A}\hat{\Delta})\sin((1-\hat{A})\hat{\Delta})/((1-\hat{A})\hat{A});\\ p_{\cos\delta} &= \alpha\sin(2\theta_{13})\zeta\cos\delta\cos\hat{\Delta}\sin(\hat{A}\hat{\Delta})\sin(1-\hat{A}\hat{\Delta})/((1-\hat{A})\hat{A});\\ p_{\rm solar} &= \alpha^2\cos\theta_{23}^2\sin^22\theta_{12}\sin^2(\hat{A}\hat{\Delta})/\hat{A}^2; \end{aligned}$$

$$\begin{split} &\alpha = \operatorname{Abs}(\Delta m_{21}^2 / \Delta m_{31}^2); \ \hat{\Delta} = \frac{L \Delta m_{31}^2}{4E} \ \zeta = \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \\ &\hat{\boldsymbol{A}} = \pm \boldsymbol{a} / \Delta m_{31}^2; \ \boldsymbol{a} = 7.6 \cdot 10^{-5} \rho \cdot E_{\nu} (\text{GeV}) \quad \rho = \text{matter density } (\text{g cm}^{-3}) \\ &\text{The } \hat{\boldsymbol{A}} \text{ term changes sign with } \operatorname{sign}(\Delta m_{23}^2) \end{split}$$

$\begin{array}{l} \text{Matter effects require long "long baselines"}\\ E_{\nu}=0.35 \text{GeV} \ \textit{L}\simeq 130 \ \text{km} \quad E_{\nu}=1 \text{GeV} \ \textit{L}\simeq 500 \ \text{km} \end{array}$

$$\begin{aligned} P_{\theta_{13}} &= \sin^2(2\theta_{13})\sin\theta_{23}^2\sin^2((\hat{A}-1)\hat{\Delta})/(\hat{A}-1)^2;\\ p_{\sin\delta} &= \alpha\sin(2\theta_{13})\zeta\sin\delta\sin(L\hat{\Delta})\sin(\hat{A}\hat{\Delta})\sin((1-\hat{A})\hat{\Delta})/((1-\hat{A})\hat{A});\\ p_{\cos\delta} &= \alpha\sin(2\theta_{13})\zeta\cos\delta\cos\hat{\Delta}\sin(\hat{A}\hat{\Delta})\sin(1-\hat{A}\hat{\Delta})/((1-\hat{A})\hat{A});\\ p_{\rm solar} &= \alpha^2\cos\theta_{23}^2\sin^22\theta_{12}\sin^2(\hat{A}\hat{\Delta})/\hat{A}^2; \end{aligned}$$

$$\begin{split} &\alpha = \operatorname{Abs}(\Delta m_{21}^2 / \Delta m_{31}^2); \ \hat{\Delta} = \frac{L \Delta m_{31}^2}{4E} \ \zeta = \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \\ &\hat{\boldsymbol{A}} = \pm \boldsymbol{a} / \Delta m_{31}^2; \ \boldsymbol{a} = 7.6 \cdot 10^{-5} \rho \cdot E_{\nu} (\text{GeV}) \quad \rho = \text{matter density } (\text{g cm}^{-3}) \\ &\text{The } \hat{\boldsymbol{A}} \text{ term changes sign with } \operatorname{sign}(\Delta m_{23}^2) \end{split}$$

Matter effects require long "long baselines" $E_{\nu} = 0.35 \text{GeV} \ L \simeq 130 \text{ km}$ $E_{\nu} = 1 \text{ GeV} \ L \simeq 500 \text{ km}$ $E_{\nu} = 3 \text{ GeV} \ L \simeq 1500 \text{ km}$ (Probs in Vacuum (Magenta) and Matter (blue) (Probs in Vacuum (Magenta) and Matter (blue) {Probs in Vacuum (Magenta) and Matter (blue) } 0.04 0.025 0.02 0.02 0.015 0.02 0.01 0.01 0.01 0.005 0.005 1000^L 1000 1500 2000 2500 3000 L (km)

Status after the first and second generation: $\delta_{\rm CP}$

Status after the first and second generation: $\delta_{\rm CP}$

To address leptonic CP violation: improve of at least one order of magnitude the sensitivity of $\sin^2 2\theta_{13}$; two order of magnitudes more neutrinos !!!

Upgrade existing or future accelerators to several MW power and build WC detectors 10 \times Super Kamiokande or 300 \times Icarus

• Japan.

J-Parc: 0.75 \Rightarrow 2 MW + Super Kamiokande \Rightarrow Hyper Kamiokande (500 kton fiducial: 20 × bigger)

• USA.

FNAL: Project X to a 300 kton water Cherenkov detector (or

3-6 imes 20kton liquid argon) at Dusel, $L\sim$ 1300 km.

Europe

- $10 \times \text{CNGS} \Rightarrow$ off-axis CNGS fired on a 20-100 kton liquid argon detector
- 4 MW SPL fired on 500 kton water Cherenkov (Memphys) at Frejus at 130 km
- 2 MW PS2 fired on 100 kton liquid Argon (Glacier) at Slanic (RO) at 1570 km

SuperBeams - J-PARC phase 2 (T2HK)

Upgrade the proton driver from 0.75 MW to 4 MW Upgrade SuperKamiokande by a factor $\sim 20 \implies$ HyperKamiokande Both upgrades are necessary to address leptonic CP searches.

The detector would have valuable physics potential in proton decay, SN neutrinos, solar neutrinos.

Other possibility:

displace half detector in Korea at the second oscillation maximum (T2KK) for better sensitivity on $sign(\Delta m_{23}^2)$ and better degeneracy removal

T. Kobayashi, J.Phys.G29:1493(2003)

The Memphys detector (hep-ex/0607026)

In the middle of the Frejus tunnel at a depth of 4800 m.w.e excavate three shafts of about 250,000 m³ each ($\Phi = 65 m$, full height=80 m). 440 kton fiducial volume

30% coverage by using 12" PMT's, 81k per shaft (with the same photostatistics of SuperKamiokande with 40% coverage)

Physics scope, independently from the beam

- Proton decay
- Super Nova neutrinos
- Relic Super Nova neutrinos
- Solar and Atmospheric neutrinos
- Indirect searches of DM annihilation in the sun

SuperBeams - SPL u beam at CERN

- A 3.5 GeV, 4MW Linac: the HP-SPL.
- A liquid mercury (or carbon) target capable to manage the 4 MW proton beam. R&D required.
- A conventional neutrino beam optics capable to survive to the beam power, the radiation and the mercury. Already prototyped.
- Up to here is the first stage of a neutrino factory complex.
- A sophisticated close detector to measure at 2% signal and backgrounds.
- A megaton class detector under the Frejus, L=130 km: Memphys.

PS2 Super Beams

A. Rubbia: arXiv.1003.1921

Assume 2 MW from a 50 GeV PS2.

An on-axis wide band neutrino beam.

Three possible sites: Sieroszowice at 950 km, Slanic at 1544 km or Pyhasalmi at 2300 km. A 100 kton liquid argon detector capable of measuring neutrino oscillations at both the first and second oscillation maxima with optimal performance on reconstruction of neutrino energy and background rejection.

Conventional neutrino beams are going to hit their ultimate limitations.

In a **conventional neutrino beam**, neutrinos are produced SECONDARY particle decays (mostly pions and kaons).

Given the short life time of the pions $(2.6 \cdot 10^{-8}s)$, they can only be focused (and charge selected) by means of magnetic horns. Then they are let to decay in a decay tunnel, short enough to prevent most of the muon decays.

- Besides the main component (ν_μ) at least 3 other neutrino flavors are present (ν
 _μ, ν_e, ν
 _e), generated by wrong sign pions, kaons and muon decays. ν_econtamination is a background for θ₁₃ and δ, ν
 _μcontamination dilutes any CP asymmetry.
- Hard to predict the details of the neutrino beam starting from the primary proton beam, the problems being on the secondary particle production side.
- Difficult to tune the energy of the beam in case of ongoing optimizations.

Collect, focus and accelerate the neutrino parents at a given energy. This is impossible within the pion lifetime, but can be tempted within the muon lifetime (Neutrino Factories) or within some radioactive ion lifetime (Beta Beams):

- Just one flavor in the beam
- Energy shape defined by just two parameters: the endpoint energy of the beta decay and the γ of the parent ion.
- Flux normalization given by the number of ions circulating in the decay ring.
- Beam divergence given by γ .

Beta Beam (P. Zucchelli: Phys. Lett. B532:166, 2002)

M. Lindroos M. Mezzetto, "Beta Beams", Imperial College Press, 2009

• $\overline{\nu}_e$ generated by He⁶, 100 μ A, $\Rightarrow 2.9 \cdot 10^{18}$ ion decays/straight session/year.

• ν_e generated by Ne^{18}, 100 $\mu A, \Rightarrow 1.1\cdot 10^{18}$ ion decays/straight session/year.

Updated sensitivities of SPL, BB and SPL+BB

Some scaling laws in Beta Beams

β^+ emitters			β^- emitters			
lon	Q_{eff} (MeV)	Z/A	lon	Q_{eff} (MeV)	Z/A	
¹⁸ Ne	3.30	5/9	бНе	3.508	1/3	
⁸ B	13.92	5/8	⁸ Li	12.96	3/8	

- Proton accelerators can accelerate ions up to $Z/A \times$ the proton energy.
- Lorentz boost: end point of neutrino energy $\Rightarrow 2\gamma Q$
- In the CM neutrinos are emitted isotropically \Rightarrow neutrino beam from accelerated ions gets more collimated $\propto \gamma^2$
- Merit factor for an experiment at the atmospheric oscillation maximum: $\mathcal{M} = \frac{\gamma}{\rho}$

(End point energy of a muon decay = 68 MeV \Rightarrow merit factor of a Beta Beam about 20 times better than a Neutrino Factory.)

- Ion lifetime must be:
 - As long as possible: to avoid ion decays during acceleration
 - As short as possible: to avoid to accumulate too many ions in the decay ring
 - \Rightarrow optimal window: lifetimes around 1 s.
- $\bullet\,$ Decay ring length scales $\propto\gamma,$ following the magnetic rigidity of the ions.
- Two body decay kinematics : going off-axis the neutrino energy changes (feature used in some ECB setup and in the low energy setup)

Mauro Mezzetto (INFN Padova)

Experimental perspectives of neutrino physics

• High energy Beta Beams $\gamma = 350$ Beta Beams at $L \simeq 700$ km outperform the Eurisol BB but

- High energy Beta Beams $\gamma = 350$ Beta Beams at $L \simeq 700$ km outperform the Eurisol BB but
 - They require a 1 TeV accelerator, at present not in the CERN plans.
 - Decay ring length $\propto \gamma,$ and a 3° slope needed \Rightarrow very expensive option
 - Ion lifetime $\propto \gamma,$ difficult if not impossible to store the needed ions in the decay ring with the present injection scheme.

- High energy Beta Beams $\gamma = 350$ Beta Beams at $L \simeq 700$ km outperform the Eurisol BB but
 - They require a 1 TeV accelerator, at present not in the CERN plans.
 - Decay ring length $\propto \gamma,$ and a 3° slope needed \Rightarrow very expensive option
 - Ion lifetime $\propto \gamma,$ difficult if not impossible to store the needed ions in the decay ring with the present injection scheme.
- High-Q Beta Beams: for the same γ higher ν energies \Rightarrow better mass hierarchy performances (alternatively smaller γ for the same baseline \Rightarrow shorter/cheaper decay ring)

- High energy Beta Beams $\gamma = 350$ Beta Beams at $L \simeq 700$ km outperform the Eurisol BB but
 - They require a 1 TeV accelerator, at present not in the CERN plans.
 - Decay ring length $\propto \gamma,$ and a 3° slope needed \Rightarrow very expensive option
 - Ion lifetime $\propto \gamma,$ difficult if not impossible to store the needed ions in the decay ring with the present injection scheme.
- High-Q Beta Beams: for the same γ higher ν energies \Rightarrow better mass hierarchy performances (alternatively smaller γ for the same baseline \Rightarrow shorter/cheaper decay ring)
 - Merit factor $\propto 1/Q$, needs 3-4 times more ions to match the Eurisol BB θ_{13} and LCPV performances (Fernandez-Martinez E, arXiv:0912.3804 [hep-ph])
 - The injection ring proposed by C. Rubbia (C. Rubbia et al.,NIM A **568** (2006) 475), now actively studied in the EuroNu WP4 package, could match the ion production, but apparently the PS-SPS chain cannot digest all those ions.

- High energy Beta Beams $\gamma = 350$ Beta Beams at $L \simeq 700$ km outperform the Eurisol BB but
 - They require a 1 TeV accelerator, at present not in the CERN plans.
 - Decay ring length $\propto \gamma,$ and a 3° slope needed \Rightarrow very expensive option
 - Ion lifetime $\propto \gamma,$ difficult if not impossible to store the needed ions in the decay ring with the present injection scheme.
- High-Q Beta Beams: for the same γ higher ν energies \Rightarrow better mass hierarchy performances (alternatively smaller γ for the same baseline \Rightarrow shorter/cheaper decay ring)
 - Merit factor $\propto 1/Q$, needs 3-4 times more ions to match the Eurisol BB θ_{13} and LCPV performances (Fernandez-Martinez E, arXiv:0912.3804 [hep-ph])
 - The injection ring proposed by C. Rubbia (C. Rubbia et al.,NIM A 568 (2006) 475), now actively studied in the EuroNu WP4 package, could match the ion production, but apparently the PS-SPS chain cannot digest all those ions.
- Electron capture Beta Beams: monochromatic neutrino beams, a very attractive option

- High energy Beta Beams $\gamma = 350$ Beta Beams at $L \simeq 700$ km outperform the Eurisol BB but
 - They require a 1 TeV accelerator, at present not in the CERN plans.
 - Decay ring length $\propto \gamma,$ and a 3° slope needed \Rightarrow very expensive option
 - Ion lifetime $\propto \gamma,$ difficult if not impossible to store the needed ions in the decay ring with the present injection scheme.
- High-Q Beta Beams: for the same γ higher ν energies \Rightarrow better mass hierarchy performances (alternatively smaller γ for the same baseline \Rightarrow shorter/cheaper decay ring)
 - Merit factor $\propto 1/Q$, needs 3-4 times more ions to match the Eurisol BB θ_{13} and LCPV performances (Fernandez-Martinez E, arXiv:0912.3804 [hep-ph])
 - The injection ring proposed by C. Rubbia (C. Rubbia et al.,NIM A 568 (2006) 475), now actively studied in the EuroNu WP4 package, could match the ion production, but apparently the PS-SPS chain cannot digest all those ions.
- Electron capture Beta Beams: monochromatic neutrino beams, a very attractive option
 - They require long lived, high-A, far from the stability valley ions, r \Rightarrow challenging R&D to match the needed fluxes.

The Beta Beam - SPL Super Beam synergy

MM, Nucl. Phys. Proc. Suppl. 149 (2005) 179.

Yearly Fluxes

A Beta Beam has the same energy spectrum than the SPL SuperBeams and consumes 5% of the SPL protons. The two beams could be fired to the same detector \Rightarrow LCPV searches through CP and T channels (with the possibility of using just neutrinos).

Access to CPTV direct searches.

Cross measurement of signal cross section in the close detectors

The basic concept of a neutrino factory

High power (4 MW) proton beam onto a liquid mercury target.

System for collection of the produced pions and their decay products, the muons.

Energy spread and transverse emittance have to be reduced: "phase rotation" and ionization cooling

Acceleration of the muons to 20 $\mbox{GeV}.$

Muons are injected into a storage ring (decay ring), where they decay in long straight sections in order to deliver the desired neutrino beams.

Oscillation signals at the neutrino factory

$$\mu^-$$
 (μ^+) decay in (ν_μ , $\overline{\nu}_e$) (($\overline{\nu}_\mu$, ν_e)).

Golden channel: search for $\nu_e \rightarrow \nu_\mu (\overline{\nu}_e \rightarrow \overline{\nu}_\mu)$ transitions by detecting wrong sign muons. Default detector: 40-100 kton iron magnetized calorimeter (Minos like)

Silver channel: search for $\nu_e \rightarrow \nu_{\tau}$ transitions by detecting ν_{τ} appearance. Ideal detectors: 4× Opera or 20 Kton LAr detector.

Sensitivity Comparison: θ_{13}

Sensitivity Comparison: $sign(\Delta m_{23}^2)$

Mass hierarchy at 3σ CL

Mauro Mezzetto (INFN Padova)

Sensitivity Comparison: LCPV

CP violation at 3σ CL

• Long Baseline neutrino experiments to measure θ_{13} are just starting. They will explore θ_{13} with a discovery potential 20 times better than the existing limit.

- Long Baseline neutrino experiments to measure θ_{13} are just starting. They will explore θ_{13} with a discovery potential 20 times better than the existing limit.
- They won't anyway have enough sensitivity to attack mass hierarchy and leptonic CP violation searches with sufficient sensitivity. Further upgrades are needed.

- Long Baseline neutrino experiments to measure θ_{13} are just starting. They will explore θ_{13} with a discovery potential 20 times better than the existing limit.
- They won't anyway have enough sensitivity to attack mass hierarchy and leptonic CP violation searches with sufficient sensitivity. Further upgrades are needed.
- We have several possible innovative strategies to attack leptonic CP violation searches.

- Long Baseline neutrino experiments to measure θ_{13} are just starting. They will explore θ_{13} with a discovery potential 20 times better than the existing limit.
- They won't anyway have enough sensitivity to attack mass hierarchy and leptonic CP violation searches with sufficient sensitivity. Further upgrades are needed.
- We have several possible innovative strategies to attack leptonic CP violation searches.
- Super Beams could reach a 3σ sensitivity in case of moderately large values of θ_{13} , basically in the range of discovery by the present generation of experiments. Difficult to immagine further upgrades.

- Long Baseline neutrino experiments to measure θ_{13} are just starting. They will explore θ_{13} with a discovery potential 20 times better than the existing limit.
- They won't anyway have enough sensitivity to attack mass hierarchy and leptonic CP violation searches with sufficient sensitivity. Further upgrades are needed.
- We have several possible innovative strategies to attack leptonic CP violation searches.
- Super Beams could reach a 3σ sensitivity in case of moderately large values of θ_{13} , basically in the range of discovery by the present generation of experiments. Difficult to immagine further upgrades.
- Innovative concepts like beta beams and neutrino factories can guarantee higher sensitivities. More important, they can be upgraded to allow for future searches like non-standard neutrino interactions, checks of the unitarity triangle, searches of CPT violation. They require anyway R&D to be fully designed (EuroNu FP7 DS).

- Long Baseline neutrino experiments to measure θ_{13} are just starting. They will explore θ_{13} with a discovery potential 20 times better than the existing limit.
- They won't anyway have enough sensitivity to attack mass hierarchy and leptonic CP violation searches with sufficient sensitivity. Further upgrades are needed.
- We have several possible innovative strategies to attack leptonic CP violation searches.
- Super Beams could reach a 3σ sensitivity in case of moderately large values of θ_{13} , basically in the range of discovery by the present generation of experiments. Difficult to immagine further upgrades.
- Innovative concepts like beta beams and neutrino factories can guarantee higher sensitivities. More important, they can be upgraded to allow for future searches like non-standard neutrino interactions, checks of the unitarity triangle, searches of CPT violation. They require anyway R&D to be fully designed (EuroNu FP7 DS).
- A beta beam setup can make use of existing CERN infrastructures like the PS and the SPS. The injector side can be shared with nuclear physicists (Eurisol). The far detector is the same detector aimed for proton decay searches and astrophysics (Laguna FP7 DS). Under this perspective a super beam built around the SPL could offer very interesting synergies.

- Long Baseline neutrino experiments to measure θ_{13} are just starting. They will explore θ_{13} with a discovery potential 20 times better than the existing limit.
- They won't anyway have enough sensitivity to attack mass hierarchy and leptonic CP violation searches with sufficient sensitivity. Further upgrades are needed.
- We have several possible innovative strategies to attack leptonic CP violation searches.
- Super Beams could reach a 3σ sensitivity in case of moderately large values of θ_{13} , basically in the range of discovery by the present generation of experiments. Difficult to immagine further upgrades.
- Innovative concepts like beta beams and neutrino factories can guarantee higher sensitivities. More important, they can be upgraded to allow for future searches like non-standard neutrino interactions, checks of the unitarity triangle, searches of CPT violation. They require anyway R&D to be fully designed (EuroNu FP7 DS).
- A beta beam setup can make use of existing CERN infrastructures like the PS and the SPS. The injector side can be shared with nuclear physicists (Eurisol). The far detector is the same detector aimed for proton decay searches and astrophysics (Laguna FP7 DS). Under this perspective a super beam built around the SPL could offer very interesting synergies.
- A neutrino factory can offer the ultimate performances in neutrino oscillations and can be seen as the first stage of a muon collider.