

Sin($2\beta_s$) at CDF: Updated measurement of the CP violating phase in the B_s - \overline{B}_s system

Louise Oakes, for the CDF collaboration University of Oxford

FPCP2010 25th May 2010

Search for New Physics in B_s mixing

New particles could enter weak mixing box diagrams and enhance CP violation
 Time evolution of flavour tagged B_s→J/ψφ decays is very sensitive to New Physics

 $\hfill\square$ Decay width difference, $\Delta\Gamma$ and mixing phase would be effected by additional NP phase

Analysis overview

Reconstruct $B_s \rightarrow J/\psi(\rightarrow \mu^+\mu^-) \phi(\rightarrow K^+K^-)$

25th May 2010

5.36 5.38 5.4 5.42 5.44 5.4 Mass(J/ψ φ) [GeV/c²]

Recap of previous results

CDF: 2.8fb⁻¹ result P-value for SM point =7% -> significance 1.8σ

25th May 2010

Tevatron combination: probability of observed deviation from SM = 3.4% (2.12 σ)

CDF Public Note 9787

New CDF sin(2β_s) *results for FPCP 2010*

Data sample and selection for update

- Statistically limited analysis high quality selection is essential:
- □ Key role of particle ID
 - recalibrated for this result
- Neural network selection
 - optimised on pseudo experiments to minimise statistical errors on β_s
- Fully data-driven recalibration of Btagging
 - SSKT updated for this measurement
 - Integrated luminosity: 5.2fb⁻¹
 Signal events: ~6500 (c.f. 2.8fb⁻¹ with ~3150 signal events)

Louise Oakes ~ CDF ~ FPCP2010

Flavour tagging

- Flavour tagging Opposite side tag (OST) and same side kaon tag (SSKT) - important component of the measurement
- Fit without flavour tagging, has four fold ambiguity:
 - **a** β_s and $\Delta\Gamma$ symmetric
 - strong phases symmetric about pi

$$\begin{array}{cccc} \beta_s & \rightarrow & \frac{\pi}{2} - \beta_s \\ \Delta \Gamma & \rightarrow & -\Delta \Gamma \\ \phi_{\parallel} & \rightarrow & 2\pi - \phi_{\parallel} \\ \phi_{\perp} & \rightarrow & \pi - \phi_{\perp} \end{array} \text{ and } \begin{array}{c} \beta_s \rightarrow -\beta_s \\ \Delta \Gamma \rightarrow -\Delta \Gamma \end{array} \\ \begin{array}{c} 0.8 \text{ CDF pseudo experiments} \\ \hline 0.0 \\ 0.2 \\ 0.4 \\ \hline 0.4 \\ \hline 0.2 \\ 0.4 \\ \hline 0.2 \\ 0.4 \\ \hline 0.4 \\$$

B flavour tagging: SSKT calibration

- SSKT updated for this analysis
- calibrated on B_s mixing measurement
- B_s mixing measured with 5.2fb⁻¹
- First CDF calibration of a SSKT on data
- Uses several decay modes:

 $\begin{array}{l} B^0_s \to D^-_s \pi^+, \ D^-_s \to \phi^0 \pi^-, \ \phi^0 \to K^+ K^- \\ B^0_s \to D^-_s \pi^+, \ D^-_s \to K^* K^-, \ K^* \to K^+ \pi^- \\ B^0_s \to D^-_s \pi^+, \ D^-_s \to (3\pi)^- \\ B^0_s \to D^-_s (3\pi)^+, \ D^-_s \to \phi^0 \pi^-, \ \phi^0 \to K^+ K^- \end{array}$

golden mode

http://www-cdf.fnal.gov/physics/new/bottom/100204.blessed-sskt-calibration/index.html

Louise Oakes ~ CDF ~ FPCP2010

8

B flavour tagging: SSKT calibration

- Mixing amplitude ≈ 1 :
 - tagger assesses its performance accurately
- Amplitude > 1
 - tagger underestimates its power
- Amplitude < 1
 - tagger overestimates performance
- Measured amplitude used to scale event by event tagging dilution

Agreement between this and the published CDF measurement is very good

$$\mathcal{A}=0.94\pm0.15$$
 (stat.) \pm 0.13 (syst.)

 $\Delta m_s = 17.79 \pm 0.07 \ ps^{-1}$ (stat. only) $\epsilon A^2 D^2 \approx 3.2 \pm 1.4 \%$

S-wave contamination

- Potential contamination of $B_s -> J/\psi \phi$ signal by: $B_s -> J/\psi$ KK (KK non-resonant) and $B_s -> J/\psi$ f⁰ where KK and f⁰ are S-wave states
- Predicted up to 15%
 contamination of total sample
 (~6% of signal)
 could bias towards SM value of β_s

Invariant KK mass (above)

- combinatorial background from B_s sidebands
- B⁰ reflections modelled from MC
- □ Fractions fixed from B_s mass fit (left)

Louise Oakes ~ CDF ~ FPCP2010

Inclusion of S-wave KK component

- S-wave KK component has been added to full angular, time-dependent likelihood fit.
- Both f^0 and non-resonant KK are considered flat in mass within the small selection window, ϕ meson mass is modelled by asymmetric, relativistic Breit Wigner.
- J/ψ KK (f⁰) is pure CP odd state
- KK mass is NOT a fit parameter

The fitted fraction of KK S-wave contamination in the signal is < 6.7% at the 95% CL

Fit projections on physical parameters such as B_s lifetime used to check performance of the likelihood fit

B_s lifetime distribution consisting of:

- **B** B_s^{H} (short lived)
- \square B_s^L (long lived) -

Flavour tagged fit with $\beta_s = 0.0$

- □ Tagged $B_s \rightarrow J/\psi \phi$ likelihood fit
- CP violating phase, $\beta_s = 0$, set to SM prediction

CDF II Preliminary 5.2fb -1

 $au_s = 1.53 \pm 0.025 \text{ (stat.)} \pm 0.012 \text{ (syst.) ps}$ $\Delta \Gamma = 0.075 \pm 0.035 \text{ (stat.)} \pm 0.01 \text{ (syst.) } ps^{-1}$ $|A_{\parallel}(0)|^2 = 0.231 \pm 0.014 \text{ (stat)} \pm 0.015 \text{ (syst.)}$

$$|A_0(0)|^2 = 0.524 \pm 0.013 \text{ (stat)} \pm 0.015 \text{ (syst.)}$$

 $\phi_{\perp} = 2.95 \pm 0.64 \text{ (stat)} \pm 0.07 \text{ (syst.)}$

World's most precise single measurement of B_s lifetime and decay width difference PDG value:

$$\tau_s = 1.47^{+0.026}_{-0.027} \text{ ps}$$

New CDF measurement of β_s

Louise Oakes ~ CDF ~ FPCP2010

New CDF measurement of β_s

1D likelihood profile for β_{s}

P-value for SM point: 31% (1.0 σ deviation)

0

 β_s (rad)

2

0

-1

Comparisons

Summary

• First showing of updated CDF search for NP in $B_s \rightarrow J/\psi\phi$

Tightened constraints on CP violating phase β_s
 [0.0, 0.5] U [1.1, 1.5] (68% CL)
 [-0.1, 0.7] U [0.9, pi/2] U [-pi/2, -1.5] (95% CL)

- **D** P-value for SM point: 44% (0.8σ)
- World's best measurement of B_s lifetime and decay width difference in hypothesis of no CP violation
- Not only doubled the sample size many improvements to analysis:
 - Included contribution from S-wave KK final state
 - measured contamination of <6.7% at 95% CL</p>
 - More powerful NN selection
 - Fully calibrated B flavour tagging and PID

Future prospects

- Tevatron delivering record luminosity, CDF records
 ~60pb⁻¹ per week
- By end of 2011 will have doubled again the dataset, and made further improvements to analysis
- Search for NP in B_s mixing at CDF has potential to observe/exclude wide range of non-SM mixing phase values

Back up

Louise Oakes ~ CDF ~ FPCP2010

Inclusion of S-wave KK component

S-wave KK component included in decay rate:

20

Integrate out KK mass dependence:

$$\begin{split} \rho_B(\theta,\psi,\phi,t) &= (1-F_s) \cdot P_B(\theta,\psi,\phi,t) + F_s Q_B(\theta,\psi,\phi,t) \\ &+ 2 \frac{\sqrt{27}}{16\pi} Re \left[\mathcal{I}_{\mu} \left((\mathbf{A}_- \times \hat{n}) \cdot (\mathbf{B} \times \hat{n}) \cdot |f_-(t)|^2 + (\mathbf{A}_+ \times \hat{n}) \cdot (\mathbf{B} \times \hat{n}) \cdot f_+(t) \cdot f_-^*(t) \right) \right] \end{split}$$

• where:

- I(mu) is an integrated mass and relative phase interference term
- P_B and Q_B are the decay rates for the P-wave phi and S-wave KK states

25th May 2010

Louise Oakes ~ CDF ~ FPCP2010

Fit function

Use a multivariate fit combining angular analysis and time dependence

• Fit without flavour tagging:

• Flavour tagging added:

signal $\mathcal{L}_{i} = f_{s} \cdot P_{s}(m) \cdot \frac{P_{s}(\xi)}{P_{b}(m)} \cdot \frac{T(t,\psi,\theta,\phi,\mathcal{D},\xi)}{P_{b}(\xi) \cdot P_{b}(t,\sigma_{t})} \cdot \frac{P_{s}(\sigma_{t})}{P_{b}(\psi)} \cdot \frac{P_{s}(\mathcal{D})}{P_{b}(\phi)} + \frac{P_{s}(\mathcal{D})}{P_{b}(\phi)} \cdot \frac{P_{b}(\sigma_{t})}{P_{b}(\phi)} \cdot \frac{P_{b}(\sigma_{t})}{P_{b}(\phi)} \cdot \frac{P_{b}(\sigma_{t})}{P_{b}(\phi)} \cdot \frac{P_{b}(\sigma_{t})}{P_{b}(\phi)} \cdot \frac{P_{b}(\mathcal{D})}{P_{b}(\phi)}$

terms altered or added by tag decision or tagging dilution

Potential NP contributions

- 4th generation could enhance the weak mixing diagram in the neutral B_s system
- George W.S. Hou suggests the t' as a possible contribution to the mixing box diagrams
- SM contains the ingredients to generate the 100% Baryon Asymmetry of the Universe (BAU)
- Predicted CP violation from
 3 generations is negligible
 compared to what is observed in
 BAU
- 4th generation of quarks would lead to "unitarity quadrangle"
 - -> enhances SM CP violation by 10 orders of magnitude!

arXiv:0803.1234v3 George W.S. Hou

Systematic errors

- Systematic study for point estimates uses pseudo experiments to estimate potential effects of any mis-parameterisations in the fitter.
- 2 techniques used:
 - Generating pseudo experiments using an altered parameterisation, fitting with default model
 - Generating pseudo experiments according to histograms of real data distribution

Systematic	ΔΓ	<u>ст</u>	$ A_{u}(0) ^{2}$	$ 4(0) ^2$	<i>.</i>
G: 1 m :		CIS	A (0)	A ₀ (0)	ψ_{\perp}
Signal efficiency:		-	2 2222		2020.2
Parameterisation	0.0024	0.96	0.0076	0.008	0.016
MC reweighting	0.0008	0.94	0.0129	0.0129	0.022
Signal mass model	0.0013	0.26	0.0009	0.0011	0.009
Background mass model	0.0009	1.4	0.0004	0.0005	0.004
Resolution model	0.0004	0.69	0.0002	0.0003	0.022
Background lifetime model	0.0036	2.0	0.0007	0.0011	0.058
Background angular distribution:					
Parameterisation	0.0002	0.02	0.0001	0.0001	0.001
$\sigma(c\tau)$ correlation	0.0002	0.14	0.0007	0.0007	0.006
Non-factorisation	0.0001	0.06	0.0004	0.0004	0.003
$B^0 \to J \psi K^*$ crossfeed	0.0014	0.24	0.0007	0.0010	0.006
SVX alignment	0.0006	2.0	0.0001	0.0002	0.002
Mass error	0.0001	0.58	0.0004	0.0004	0.002
$c\tau$ error	0.0012	0.17	0.0005	0.0007	0.013
Pull bias	0.0028		0.0013	0.0021	
Totals	0.01	3.6	0.015	0.015	0.07

Point estimates: results comparison

$$egin{array}{rcl} c au &=& 458.64 \pm 7.54 \ {
m (stat.)} \ \mu m \ \Delta \Gamma &=& 0.075 \pm 0.035 \ {
m (stat.)} \ ps^{-1} \ |A_{\parallel}|^2 &=& 0.231 \pm 0.014 \ {
m (stat.)} \ |A_0|^2 &=& 0.524 \pm 0.013 \ {
m (stat.)} \ \phi_{\perp} &=& 2.95 \pm 0.64 \ {
m (stat.)} \end{array}$$

```
Tagged, with S-wave
```

```
c\tau = 459.1 \pm 7.7 \text{ (stat.) } \mu m
  \Delta \Gamma = 0.073 \pm 0.03 (stat.) ps^{-1}
|A_{\parallel}|^2 = 0.232 \pm 0.014 \text{ (stat.)}
|A_0|^2 = 0.523 \pm 0.012 (stat.)
             \phi_{\perp} = 2.80 \pm 0.56
```

24

Tagged, no S-wave

Untagged, with S-wave

Untagged, no S-wave

 $c au ~=~ 456.93 \pm 7.69 ~{
m (stat.)} ~\mu m$ $\Delta \Gamma = 0.071 \pm 0.036 \text{ (stat.) } ps^{-1}$ $\Delta \Gamma = 0.070 \pm 0.04 \text{ (stat.) } ps^{-1}$ $|A_{\parallel}|^2 = 0.233 \pm 0.015 \text{ (stat.)}$ $|A_0|^2 = 0.521 \pm 0.013 \text{ (stat.)}$

 $c\tau = 457.2 \pm 7.9 \text{ (stat.) } \mu m$ $|A_{\parallel}|^2 = 0.233 \pm 0.016 \text{ (stat.)}$ $|A_0|^2 = 0.520 \pm 0.013$ (stat.)

Comparisons

new CDF result

2009 Tevatron combined result

2D likelihood contours for β_{s} and $\Delta\Gamma$ without coverage adjustment

Inclusion in the fit of S-wave KK (f⁰) contamination to phi meson signal has small effect on likelihood contours

Measurement of β_s : coverage adjustment

26

Use likelihood ratio ordering technique to account for non-Gaussian behaviour (ensure confidence regions not under-covered) and to include effect of systematics on the errors:

- Generate pseudo experiments at the SM point in the $\Delta\Gamma$ - β_s plane.
- Fit with all parameters floating
- **•** Fit again with $\Delta\Gamma$ and β_s fixed to the SM point
- Form a likelihood ratio:

$$\mathcal{LR} = 2\log rac{\mathcal{L}(eta_s^{J/\psi\phi}, \Delta\Gamma, \vec{\xi})}{\mathcal{L}(\vec{\xi})}$$

Measurement of β_s

- Ideal case: produce fit value of β_s as we do for lifetime, etc.
- $\hfill\square$ At current statistical level, fit shows some bias for β_s
- Instead, produce 2D likelihood contours in $β_s - ΔΓ$ space
 - Perform fits on data with $β_s$ and ΔΓ fixed at 400 points on 20x20 grid
 - Ratio of log likelihood value for fit at each point to the global minimum used to construct likelihood contour plots
- Use profile-likelihood ratio ordering technique to ensure coverage

CDF detector

- Particle ID: dE/dx and TOF
- Excellent vertex resolution ~23 μ m and p_T resolution: $\sigma(p_T)/p_T^2 \sim 0.1 \text{ (GeV/c)}^{-1}$
- Di-muon trigger (this analysis)
- Displaced vertex trigger: trigger level silicon tracking

Tevatron performance

- High luminosity is a benefit but also a challenge for B physics
- Expect almost twice the current sample by end of run-II

- p-pbar collisions at 1.96TeV
- Constantly improving luminosity performance
 - peak instantaneous
 luminosity >3x10³² cm⁻²s⁻¹

29

~7fb⁻¹ delivered to the experiments

25th May 2010

CP violation in neutral B_s system

Flavour eigenstates:

$$egin{aligned} B^0_s
angle &= (ar{b}s)\ |\ ar{B}^0_s
angle &= (bar{s}) \end{aligned}$$

Mixing of flavour eigenstates is governed by:

$$i\frac{d}{dt}\left(\begin{array}{c}B_{s}^{0}(t)\\\overline{B}_{s}^{0}(t)\end{array}\right) = H\left(\begin{array}{c}B_{s}^{0}(t)\\\overline{B}_{s}^{0}(t)\end{array}\right) \equiv \underbrace{\left[\left(\begin{array}{c}M_{0} & M_{12}\\M_{12}^{*} & M_{0}\end{array}\right)_{\text{mass matrix}} - \frac{i}{2}\underbrace{\left(\begin{array}{c}\Gamma_{0} & \Gamma_{12}\\\Gamma_{12}^{*} & \Gamma_{0}\end{array}\right)_{\text{decay matrix}}\right] \left(\begin{array}{c}B_{s}^{0}(t)\\\overline{B}_{s}^{0}(t)\end{array}\right)$$

Flavour eigenstates are not mass eigenstates:

 $\frac{|B_s^H\rangle = p |B_s^0\rangle - q |\bar{B}_s^0\rangle}{|B_s^L\rangle = p |B_s^0\rangle + q |\bar{B}_s^0\rangle}$

Different masses -> mixing frequency:

-> phase:

Different decay widths:

$$\begin{split} \Delta m_{s} &= m_{H} - m_{L} \approx 2 I M_{12} I \\ \phi_{s}^{SM} &= arg(-M_{12}/\Gamma_{12}) \sim 0.004 \\ \Delta \Gamma &= \Gamma_{L} - \Gamma_{H} \approx 2 I \Gamma_{12} I \cos(2\phi_{s}^{SM}) \end{split}$$

Louise Oakes ~ CDF ~ FPCP2010

Search for New Physics in B_s mixing

A New Physics effect would contribute to both the phases ϕ_s and β_s by introducing a new physics phase:

$$\phi_{s}=\phi_{s}{}^{SM}$$
 + $\phi_{s}{}^{NP}$ and $2\beta_{s}=2\beta_{s}{}^{SM}$ - $\phi_{s}{}^{NP}$

So, if NP phase dominates we measure $2\beta_s \approx -\phi_s \approx \phi_s^{NP}$

Fit function: angular separation

Final state is a mixture of CP even (~75%) and odd (~25%) states.

 $|A_0|^2$: polarisation longitudinal, parallel $|A_{//}|^2$: polarisation transverse, parallel $|A_{perp}|^2$: polarisation transverse, perpendicular Three angular momentum states of J/ψ phi:

32

L=0	S-wave	СР	even

L=1 P-wave CP odd

L=2 D-wave **CP even**

Can separate final CP states using angular variables

Transversity basis describes these contributions as: A₀, A_{//} (CP even), A_{perp} (CP odd) according to their polarisation. Can be separated using the angular distributions of the final state particles

Transversity basis

Polarisation of vector mesons w.r.t direction of motion:

- $|A_0|^2$: polarisation longitudinal, parallel
- $|A_{//}|^2$: polarisation transverse, parallel
- |A_{perp}|² : polarisation transverse, perpendicular

We let the A's be normalized such that $|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2 = 1$.

The predicted angular distributions can be found from the following prescription Let \hat{n} be the unit vector in the direction of the l^+ (J/ψ rest frame),

 $\hat{n} = (\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta),$

and let A be a complex vector defined as

$$\mathbf{A} = (A_0\cos\psi, -rac{A_{\parallel}\sin\psi}{\sqrt{2}}, irac{A_{\perp}\sin\psi}{\sqrt{2}}).$$

The angular distributions are governed by the probability density

$$P(heta,\phi,\psi)=rac{9}{16\pi}|\mathbf{A} imes\hat{n}|^2.$$

This is normalized

such that

$$\int \int \int \frac{9}{16\pi} |\mathbf{A} \times \hat{n}|^2 \sin \theta d\theta \, d\phi \sin \psi \, d\psi = 1.$$

25th May 2010

Louise Oakes ~ CDF ~ FPCP2010

Checking the fitter: projections

- Angular distributions are used to separate CP odd and even final states in both the tagged and untagged fit
- The signal fit projections for these parameters are shown below
- Used to check our parameterisation of the angular distributions

NN selection

- For final selection use
 Artificial Neural Network
 (ANN)
- Trained on realistic MC
- Most significant inputs are
 - Kaon momenta
 - vertex probabilities for the $B_{s'}$ J/ψ and ϕ
- 2.8fb⁻¹ update optimised
 NN cut value by maximising
 S/√(S+B)
- New result optimises by selecting NN value which minimises β_s errors

Distribution of signal and background ANN output (MC)

Inclusion of S-wave KK component

S-wave KK component has been added to full angular, time-dependent likelihood fit.

36

- Both f^0 and non-resonant KK are considered flat in mass within the small selection window, ϕ meson mass is modelled by asymmetric, relativistic Breit Wigner.
- J/ψ KK (f⁰) is pure CP odd state
- KK mass is NOT a fit parameter

Comparison of data periods

