## Measurement of $\phi_{s}$ at DØ

Avdhesh Chandra
Rice University
for the DØ collaboration

FPCP 2010
Torino, Italy


## $B_{s}$ Mixing



Schrödinger Equation: i $\frac{\partial}{\partial \mathrm{t}}\binom{\left|B_{s}^{0}(t)\right\rangle}{\left|\overline{B_{s}^{0}}(t)\right\rangle}=\left(\begin{array}{cc}M_{11}-\frac{i}{2} \Gamma_{11} & M_{12}-\frac{i}{2} \Gamma_{12} \\ M_{21}-\frac{i}{2} \Gamma_{21} & M_{22}-\frac{i}{2} \Gamma_{22}\end{array}\right)\binom{\left|B_{s}^{0}(t)\right\rangle}{\left|\overline{B_{s}^{0}}(t)\right\rangle}$ $>\mathrm{M}_{12}$ stems from the real part of the box diagram, dominated by top $>\Gamma_{12}$ stems from the imaginary part, dominated by charm

Three physical quantities; $\mathbf{M}_{12},\left|\Gamma_{12}\right|$ and $\arg \left(-\mathrm{M}_{12} / \Gamma_{12}\right)$
Diagonalization gives two physically observed "Light" and "Heavy" mass eigenstates

$$
\begin{aligned}
& \left|\mathrm{B}_{\mathrm{s}}^{\mathrm{H}}\right\rangle=\mathrm{N}\left[p\left|\mathrm{~B}_{\mathrm{s}}^{0}\right\rangle-q\left|\overline{\mathrm{~B}}_{\mathrm{s}}^{0}\right\rangle\right] \\
& \left|\mathrm{B}_{\mathrm{s}}^{\mathrm{L}}\right\rangle=\mathrm{N}\left[p\left|\mathrm{~B}_{\mathrm{s}}^{0}\right\rangle+q\left|\overline{\mathrm{~B}}_{\mathrm{s}}^{0}\right\rangle\right]
\end{aligned}
$$

$$
N=\frac{1}{\sqrt{p^{2}+q^{2}}}
$$

$$
\begin{gathered}
\Gamma_{s}=\frac{\Gamma_{L}+\Gamma_{H}}{2} \\
\overline{\tau_{s}}=\frac{1}{\Gamma_{s}}
\end{gathered}
$$

## $B_{s}$ Mixing

| Observable |  | SM expectation <br> (hep-ph/0612167) |
| :---: | :---: | :---: |
| CP violation weak phase | $\phi_{\mathrm{s}}=\arg \left(-\mathrm{M}_{12} / \Gamma_{12}\right)$ | $(4.2 \pm 1.4) 10^{-3} \mathrm{rad}$ |
| Decay width difference | $\Delta \Gamma_{\mathrm{s}}=\Gamma_{\mathrm{L}}-\Gamma_{\mathrm{H}}=2\left\|\Gamma_{12}\right\| \cos \phi_{\mathrm{s}}$ | $(0.096 \pm 0.039) \mathrm{ps}^{-1}$ |
| frequency of $\mathrm{B}_{\mathrm{s}}-\overline{\mathrm{B}}_{\mathrm{s}}$ <br> oscillations | $\Delta \mathrm{M}_{\mathrm{s}}=\mathrm{M}_{\mathrm{H}}-\mathrm{M}_{\mathrm{L}}=2\left\|\mathrm{M}_{12}\right\|$ | $(17.77 \pm 0.12) \mathrm{ps}^{-1}$ <br> (measured value) |

$$
\begin{aligned}
& \left|B_{s}{ }^{\text {dd }}\right\rangle=1 / \sqrt{ } 2\left(\left|B_{s} 0\right\rangle-\left|\bar{B}_{s} 0\right\rangle\right) \\
& \left|B_{s}{ }^{\text {Even }}\right\rangle=1 / \sqrt{ } 2\left(\left|B_{s}^{0}\right\rangle+\left|\bar{B}_{s}^{0}\right\rangle\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left|\mathbf{B}_{\mathbf{s}}{ }^{\mathrm{H}}\right\rangle \| \mathrm{CP} \text { odd for } \frac{q}{p}=1 \\
& \left|\mathrm{~B}_{\mathrm{s}}{ }^{\mathrm{L}}\right\rangle \xrightarrow{\|} \longrightarrow \mathrm{CP} \text { even i.e. no } \mathbf{C P} \text { violation } \\
& \text { 'squashed' triangle } \rightarrow \text { 'flat' triangle }
\end{aligned}
$$

## CP-phase in $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \phi$


$\checkmark$ CP violating mixing phase in $B_{s} \rightarrow \mathrm{~J} / \psi \phi\left(\phi_{\mathrm{s}}{ }^{\mathrm{J} / \psi \phi}\right.$ or $\left.-2 \beta_{\mathrm{s}}\right)$ is not equal to the $C P$ violating mixing phase of $B_{s}$ system i.e. $\phi_{s}{ }^{J / \psi \phi} \neq \phi_{s}$
$\checkmark$ Still small in SM $!\phi_{\mathrm{s}}^{\mathrm{J} / \psi \phi}=-2 \arg \left[-\mathrm{V}_{\mathrm{ts}} \mathbf{V}_{\mathrm{tb}}^{*} / \mathrm{V}_{\mathrm{cs}} \mathbf{V}_{\mathrm{cb}}^{*}\right]=(-\mathbf{0 . 0 4} \pm \mathbf{0 . 0 1}) \mathrm{rad}$
$\checkmark$ New physics contributions alter $\phi_{s}{ }^{J / \psi \phi}$ in the same way as for $\phi_{s}$

$$
\begin{aligned}
\phi_{\mathrm{s}}^{\mathrm{J} / \psi \phi} & \rightarrow \phi_{\mathrm{s}}^{\mathrm{J} / \psi \phi, \mathrm{SM}}+\phi_{\mathrm{s}}^{\mathrm{NP}} \\
\phi_{\mathrm{s}} & \rightarrow \phi_{\mathrm{s}}^{\mathrm{SM}}+\phi_{\mathrm{s}}^{\mathrm{NP}}
\end{aligned}
$$

Large measured value of $\phi_{s}^{J / \psi \varphi}$ is unambiguous sign of new physics!

## Transversity Basis

$$
B_{s} \rightarrow V 1+V 2(J / \psi+\phi) \quad \text { i.e. } \quad \text { Spin } 0 \rightarrow 1+1 \quad L=0,1,2
$$

- $\mathrm{L}=0$ and 2 corresponds to CP even; L=1 CP odd
$>$ The Angular distribution is written in terms of three time-dependent linear polarization amplitudes
$>$ With respect to decay axis: Parallel, perpendicular orientations of the transverse polarization ( $A_{\perp} \& A_{\|}$) and longitudinal polarization ( $\mathrm{A}_{0}$ )
> The Initial magnitude of polarization amplitudes satisfy the normalization condition $\left|A_{\perp}(0)\right|^{2}+\left|A_{\|}(0)\right|^{2}+\left|A_{0}(0)\right|^{2}=1 \quad$ where $\left|A_{\perp}(0)\right|^{2}$ is CP-odd content ( $\sim 20 \%$ )
> Polarization amplitude phases relative to each
 other are known as "strong phases" which depend only on final state interactions
$\delta_{\|}=\arg \left(\mathrm{A}_{\|}(0) \mathrm{A}_{0}{ }^{*}(0)\right)$,
$\delta_{\perp}=\arg \left(A_{\perp}(0) A_{0}{ }^{*}(0)\right)$


## Fit Ambiguity

$$
\begin{aligned}
& \delta_{1 / 2}=\delta_{\perp}-\delta_{\| / 1} \\
& \Delta \Gamma_{\mathrm{s}} \rightarrow-\Delta \Gamma_{\mathrm{s}} \quad \cos \delta_{1}>0 \\
& \phi_{\mathrm{s}} \rightarrow \pi \quad \phi_{\mathrm{s}} \quad \cos \delta_{2}>0
\end{aligned}
$$

Without initial b-flavor tag (B-tagging) and with the strong phases free, there is a 4-fold ambiguity of the solution in the $\left(\Delta \Gamma_{s}, \phi_{s}\right)$ plane

## Fit Ambiguity

$$
\begin{array}{cc}
\delta_{1 / 2}=\delta_{\perp}-\delta_{\| / 0} \\
\hline \Delta \Gamma_{\mathrm{s}} \rightarrow-\Delta \Gamma_{\mathrm{s}} & \cos \delta_{1}>0 \\
\phi_{\mathrm{s}} \rightarrow \pi & \phi_{\mathrm{s}} \\
\cos \delta_{2}>0
\end{array}
$$

## 4-fold ambiguity



Under flavor $\mathbf{U}(3)$ symmetry, strong phases and amplitudes are expected to be similar for $B_{s} \rightarrow J / \psi \phi \quad \& \quad B_{d} \rightarrow J / \psi K^{*}$
arXiv:0808.3761v5 [hep-ph] , Michael Gronau, Jonathan L. Rosner
Constraining strong phases will result in 2-fold ambiguity

## Input Variables






## Flavor Tagging

Opposite to reconstructed $\mathrm{B}_{\mathrm{s}} \quad$ On reconstructed $\mathrm{B}_{\mathrm{s}}$ side (due to side (due to $\mathrm{b}, \overline{\mathrm{b}}$ production) correlation between $\mathrm{B}_{\mathrm{s}}$ flavor and the charge of fragmentation K )

$\checkmark$ Unbinned maximum likelihood fit to mass, lifetime and decay angles
$\checkmark$ Weight applied to the angular distribution of $B_{s}$ and $\bar{B}_{s}$ according to tagging probability ( $p$ ), whenever available, otherwise $p=0.5$

Only Tagged Results are shown in rest slides

## Result, $\Delta \Gamma_{\mathrm{s}}$ vs $\phi_{\mathrm{s}}$


strong phases constrained

## Probability of SM

$\phi_{\mathrm{s}}=-0.57_{-0.30}^{+0.24}(\text { stat })_{-0.02}^{+0.07}($ syst $) \mathrm{rad}$

$$
\Delta \Gamma_{\mathrm{s}}=0.19 \pm 0.07(\text { stat })_{-0.01}^{+0.02}(\text { syst }) \mathrm{ps}^{-1}
$$

$$
\overline{\tau_{s}}=1.52 \pm 0.05(\text { stat }) \pm 0.01(\text { syst }) \mathrm{ps}
$$

## Result, $\Delta \Gamma_{\mathrm{s}}$ vs $\phi_{\mathrm{s}}$



Green band: Region allowed in some new physics models

## Result, $\Delta \Gamma_{\mathrm{s}}$ vs $\phi_{\mathrm{s}}$



## $\mathrm{a}_{\mathrm{sL}}^{\mathrm{s}}$ result overlay




$$
\mathrm{a}_{\mathrm{sL}}^{\mathrm{s}}=\frac{\Delta \Gamma_{\mathrm{s}}}{\Delta \mathbf{M}_{\mathrm{s}}} \tan \phi_{\mathrm{s}}
$$

$$
a_{\text {sL }}^{s}=-0.0146 \pm 0.0075
$$

## Combination



## Summary \& Outlook

$>$ Measurement of CP violation weak phase, $\phi_{\mathrm{s}}$ provides direct window for New Physics search
$>$ Results from $\mathrm{a}_{\mathrm{SL}}{ }^{\mathrm{s}}$ measurement at $\mathrm{D} \varnothing$ with $6.1 \mathrm{fb}^{-1}$ data are in agreement with $\phi_{s}$ measurement at $D \varnothing$ with $2.8 \mathrm{fb}^{-1}$ data
$>$ The new $\mathrm{a}_{\mathrm{SL}}{ }^{\text {s }}$ measurement added more excitement to look for an updated $\phi_{\mathrm{s}}$ measurement
$>$ Updated measurement is expected soon with more than twice the data and several improvements
$>$ Boosted decision tree (BDT) selection of candidates
$>$ Improved tagging methods
$>$ We will do combination of all DØ results, possibly also a combination with CDF

## Additional Slides

## Angular Distribution

$B_{s} \rightarrow \mathrm{~V} 1+\mathrm{V} 2(\mathrm{~J} / \psi+\phi)$ i.e. $\quad$ Spin $0 \rightarrow 1+1 \quad L=0,1,2$

- $\mathrm{L}=0$ and 2 corresponds to CP even; L=1 CP odd
* Angular distribution can be written in helicity basis , BUT generally Transversity basis is used to write angular distribution, where polar coordinates are defined in " $\mathrm{J} / \psi$ rest frame" and" $\phi$ rest frame"


$$
\begin{aligned}
& \frac{d^{3} \Gamma\left[B_{s}^{0}(t) \rightarrow J / \psi\left(\rightarrow \mu^{+} \mu^{-}\right) \phi\left(\rightarrow K^{+} K^{-}\right)\right]}{d \cos \theta d \varphi d \cos \psi} \propto \\
& \begin{aligned}
& 2 \cos ^{2} \psi\left(1-\sin ^{2} \theta \cos ^{2} \varphi\right) \\
+ & \left.\sin ^{2} \psi\left(1-\sin ^{2} \theta \sin ^{2} \varphi\right)\right|^{2} \\
+ & \sin ^{2} \psi \sin ^{2} \theta
\end{aligned} \\
& +\frac{1}{\sqrt{2}} \sin 2 \psi \sin ^{2} \theta \sin 2 \varphi \operatorname{Re}\left(\left|A_{0}^{*}(t) \| A_{\|}(t)\right|\right) \\
& +\frac{1}{\sqrt{2}} \sin 2 \psi \sin 2 \theta \cos \varphi \quad \operatorname{Im}\left(\left|A_{0}^{*}(t)\right|\left|A_{\perp}(t)\right|\right) \\
& \left.-\sin ^{2} \psi \sin 2 \theta \sin \varphi \quad \operatorname{Im}\left(\left|A_{\|}(t) \| A_{\perp}(t)\right|\right)\right)
\end{aligned}
$$

## Polarization Amplitudes

## hep-ph/9804253 \& hep-ph/0012219

$$
\begin{aligned}
\left|A_{0}(t)\right|^{2}= & \left|\boldsymbol{A}_{0}(0)\right|^{2}\left[\mathcal{T}_{+} \pm e^{-\bar{\Gamma} t} \sin \phi_{s} \sin \left(\Delta \boldsymbol{M}_{s} t\right)\right] \mathcal{I}_{+}=\frac{1}{2}\left\{\left(1+\cos \phi_{s}\right) e^{-\Gamma_{L} t}+\left(1-\cos \phi_{s}\right) e^{-\Gamma_{H} t}\right\} \\
\left|\boldsymbol{A}_{\|}(t)\right|^{2}= & \left|\boldsymbol{A}_{\|}(0)\right|^{2}\left[\mathcal{T}_{+} \pm e^{-\bar{\Gamma} t} \sin \phi_{s} \sin \left(\Delta \boldsymbol{M}_{s} t\right)\right] \quad \mathcal{T}_{-}=\frac{1}{2}\left\{\left(1-\cos \phi_{s}\right) e^{-\Gamma_{L} t}+\left(1+\cos \phi_{s}\right) e^{-\Gamma_{H} t}\right\} \\
\left|\boldsymbol{A}_{\perp}(0)\right|^{2}= & \left|\boldsymbol{A}_{\perp}(0)\right|^{2}\left[\mathcal{T}_{-} \mp e^{-\bar{\Gamma} t} \sin \phi_{s} \sin \left(\Delta \boldsymbol{M}_{s} t\right)\right] \\
& \operatorname{Re}\left(\boldsymbol{A}_{0}^{*}(t) A_{\|}(t)\right)=\left|\boldsymbol{A}_{0}(\mathbf{0})\right|\left|\boldsymbol{A}_{\|}(\mathbf{0})\right| \cos \left(\delta_{2}-\delta_{1}\right)\left[\mathcal{T}_{+} \pm e^{-\bar{\Gamma} t} \sin \phi_{s} \sin \left(\Delta M_{s} t\right)\right]
\end{aligned}
$$

$\operatorname{Im}\left(\boldsymbol{A}_{0}^{*}(t) \boldsymbol{A}_{\perp}(t)\right)=\left|\boldsymbol{A}_{0}(\mathbf{0})\right|\left|\boldsymbol{A}_{\perp}(\mathbf{0})\right|\left[e^{-\bar{\Gamma} t}\left( \pm \sin \delta_{2} \cos \left(\Delta M_{s} t\right) \mp \cos \delta_{2} \sin \left(\Delta M_{s} t\right) \cos \phi_{s}\right)-\frac{1}{2}\left(e^{-\Gamma_{H} t}-e^{-\Gamma_{L} t}\right) \sin \phi_{s} \cos \delta_{2}\right]$ $\operatorname{Im}\left(A_{\|}^{*}(t) A_{\perp}(t)\right)=\left|A_{\|}(\mathbf{0})\right|\left|A_{\perp}(\mathbf{0})\right|\left[e^{-\bar{\Gamma} t}\left( \pm \sin \delta_{1} \cos \left(\Delta M_{s} t\right) \mp \cos \delta_{1} \sin \left(\Delta M_{s} t\right) \cos \phi_{s}\right)-\frac{1}{2}\left(e^{-\Gamma_{H} t}-e^{-\Gamma_{L} t}\right) \sin \phi_{s} \cos \delta_{1}\right]$

Upper sign corresponds to: Time evolution of pure $B_{s}{ }^{0} \rightarrow \mathrm{~J} / \psi \phi$ at $\mathrm{t}=\mathbf{0}$
Lower sign corresponds to: Tìme evolution of pure $\bar{B}_{s}{ }^{0} \rightarrow \mathrm{~J} / \psi \phi$ at $\mathrm{t}=\mathbf{0}$

$$
\begin{gathered}
\checkmark \bar{\Gamma} \rightarrow \text { average decay width of two physical eigenstates } \\
\checkmark \delta_{1} \delta_{2} \rightarrow \text { CP-conserving strong phase } ; \sim|\pi| \text { and } 0 \\
\checkmark A_{0}(0), A_{\|}(0) \rightarrow \text { CP-even linear polarization amplitude at } t=0 \\
\checkmark A_{\perp}(0) \rightarrow \text { CP-odd linear polarization amplitude at } t=0
\end{gathered}
$$

## Transversity Angles



