Measurements of γ/ϕ_3

Denis Derkach

Laboratoire de l'Accélérateur Linéaire – ORSAY CNRS/IN2P3

FPCP-2010 Turin, 25th May, 2010

FPCP-2010 Turin, 25th May, 2010 D. Derkach, Measurements of γ /

2

Motivation and importance of measuring γ

 γ is still the less precisely known UT angle. Its determination is important also because (together with V_{ub} contraint) it selects ρ - η value valid in most of the NP extensions

FPCP-2010 Turin, 25th May, 2010 D. Derkach, Measurements of $\gamma/$

BELLE

3.5 GeV *e*⁺

657M BB pairs

8 GeV *e*⁻

Experiments providing most of analyses today

γ measurements from $B \rightarrow D^{(*)}K^{(*)}$

FPCP-2010 Turin, 25th May, 2010 D. Derkach, Measurements of γ /

γ measurements from $B \rightarrow D^{(*)}K^{(*)}$

Experimentally not easy to measure. Three ways to extract the information: •GLW •ADS •Dalitz

FPCP-2010 Turin, 25th May, 2010 D. Derkach, Measurements of y/

Results from $B^+ \rightarrow D^0 K^+$

2000/1/1 2002/1/1 2004/1/1 2006/1/1 2008/1/1

D. Derkach, Measurements of $\gamma/$

FPCP-2010 Turin, 25th May, 2010

φ3

Results from $B^+ \rightarrow D^0 K^{*+}$

Integrated Luminosity(log) 1000 800 600 GGSZ, PRD 73, 112009 400 GGSZ, arXiv:1005.1096 200 ADS, DK, D⁰→Kπ, PRD 80, 092001 0 GLW, PRD 80, 092001 2002/1/1 1998/1/1 2000/1/1 2004/1/1 2006/1/1 2008/1/1 2010/1/1

D. Derkach, Measurements of $\gamma/$

FPCP-2010 Turin, 25th May, 2010

φ3

γ measurements from B \rightarrow DK (GGSZ)

A. Giri, Yu. Grossman, A. Soffer, J. Zupan, PRD 68, 054018 (2003)

FPCP-2010 Turin, 25th May, 2010

Dalitz Method

γ measurements from B \rightarrow DK (BaBar)

γ measurements from B \rightarrow DK (Belle)

γ measurements from B \rightarrow DK

Dalitz Method

Not an easy task to average the results, the model errors are not easy to be combined

Main differences in $D^0 \rightarrow K_s \pi^+ \pi^-$:

– BaBar: K-matrix formalism for $\pi\pi$ S-wave, LASS model for $K\pi$ S-wave.

- Belle: Includes σ_1 and $\sigma_2 \pi \pi$ scalar resonances. K*0(1430) for $K\pi$ Swave.

See Nicola Neri's talk!

BaBar result now also includes $D^0 \rightarrow K_s K^+ K^-$

FPCP-2010 Turin, 25th May, 2010

γ measurements from B \rightarrow DK (ADS)

γ measurements from B \rightarrow DK (BaBar)

$$x_{\pm} = r_B \cos(\delta \pm \gamma)$$
$$y_{\pm} = r_B \sin(\delta \pm \gamma)$$

ADS Method

BaBar 425 fb⁻¹ (468 MBB)

 $D^0 \rightarrow K^+ \pi^-$

Two decay chains:

$$B^- \to D^0 K^-, D^0 \to K^- \pi^+$$
 Same sign
 $B^- \to D^0 K^-, D^0 \to K^+ \pi^-$ Opposite sign

Simultaneous fit to m_{ES} and NN (based on Event shape variables Tagging variables) for both decay chains.

Fitting directly R_{ADS} and R^+ , R^- to reconstruct asymmetry. $R^- - R^+$

$$A_{ADS} = \frac{R - R}{R^- + R^+}$$

14

D. Derkach, Measurements of $\gamma/$

Turin, 25th May, 2010

γ measurements from B \rightarrow DK (results)

γ measurements from B \rightarrow DK (GLW)

$$x_{\pm} = r_B \cos(\delta \pm \gamma)$$

Modes:

$$K^{+}\pi,$$
 $R_{ADS} = \frac{\Gamma([K^{+}\pi^{-}\pi^{0}]K^{-}) + \Gamma([K^{-}\pi^{+}\pi^{0}]K^{+})}{\Gamma([K^{-}\pi^{-}\pi^{0}]K^{-}) + \Gamma([K^{+}\pi^{+}\pi^{0}]K^{+})}$
 $\frac{K^{+}\pi^{-}\pi^{0}}{K^{+}\pi^{-}\pi^{+}\pi^{-}}$
 $A_{ADS} = \frac{\Gamma([K^{+}\pi^{-}\pi^{0}]K^{-}) - \Gamma([K^{-}\pi^{+}\pi^{0}]K^{+})}{\Gamma([K^{+}\pi^{-}\pi^{0}]K^{-}) + \Gamma([K^{-}\pi^{+}\pi^{0}]K^{+})}$

M. Gronau, D. London, D. Wyler, PLB253,483 (1991); PLB 265, 172 (1991)

Theoretically very clean to determine y (with four observable)

Many D^0 Modes reconstructed: $CP+:D^0 \rightarrow K^+K^-, \pi^+\pi^ CP - : D^0 \rightarrow K^0_s \pi^0, K^0_s \omega, K^0_s \phi, (K^0_s \eta)$

CDF also gave the results with this type of analysis

GLW Method $R_{CP\pm} = \frac{\Gamma(B^- \to D_{CP\pm}^0 K^-) + \Gamma(B^+ \to D_{CP\pm}^0 K^+)}{2\Gamma(B^+ \to D^0 K^+)} = 1 + r_B^2 \pm 2r_B \cos\gamma\cos\delta_B$ Coombination of A_{cn+} D^{θ} Modes: measurements gives $> 3\sigma$ difference CP+ $A_{CP\pm} = \frac{\Gamma(B^- \to D_{CP\pm}^0 K^-) - \Gamma(B^+ \to D_{CP\pm}^0 K^+)}{\Gamma(B^- \to D_{CP\pm}^0 K^-) + \Gamma(B^+ \to D_{CP\pm}^0 K^+)} = \pm 2r_B \cos\gamma \cos\delta_B / R_{CP\pm}$ from no CPV case CP-

FPCP-2010 Turin, 25th May, 2010 D. Derkach, Measurements of y/

Final Dalitz interpretation

Parameter	68.3% CL	95.4% CL
γ (°)	68^{+15}_{-14} {4,3}	[39, 98]
r_B (%)	$9.6 \pm 2.9 \{0.5, 0.4\}$	[3.7, 15.5]
r_{B}^{*} (%)	$13.3^{+4.2}_{-3.9}$ {1.3, 0.3}	[4.9, 21.5]
κr_s (%)	$14.9^{+6.6}_{-6.2}$ {2.6, 0.6}	< 28.0
δ_B (°)	119^{+19}_{-20} {3, 3}	[75, 157]
δ_B^* (°)	$-82 \pm 21 \{5, 3\}$	[-124, -38]
δ_s (°)	$111 \pm 32 \{11, 3\}$	[42, 178]

Parameter	1σ interval	2σ interval	Systematic error	Model uncertainty
<i>φ</i> 3	$(78.4^{+10.8}_{-11.6})^{\circ}$	$54.2^{\circ} < \phi_3 < 100.5^{\circ}$	3.6°	8.9°
r_{DK}	$0.160\substack{+0.040\\-0.038}$	$0.084 < r_{DK} < 0.239$	0.011	+0.050 -0.010
r_{D^*K}	$0.196\substack{+0.072 \\ -0.069}$	$0.061 < r_{D^*K} < 0.271$	0.012	$^{+0.062}_{-0.012}$
δ_{DK}	$(136.7^{+13.0}_{-15.8})^{\circ}$	$102.2^{\circ} < \delta_{DK} < 162.3^{\circ}$	4.0°	22.9°
δ_{D^*K}	$(341.9^{+18.0}_{-19.6})^\circ$	$296.5^{\circ} < \delta_{D^*K} < 382.7^{\circ}$	3.0°	22.9°

BaBar obtains $\gamma = (68^{+15}_{-14} \pm 4 \pm 3)^{\circ}$ (from DK-, D*K-, DK*-)

Belle obtains

$$\phi_3 = (78^{+11}_{-12} \pm 4 \pm 9)^{\circ}$$

(from DK- & D*K-)

Combination of the methods

$$r_B(D^0K^+) = (0.106 \pm 0.016)$$

 $r_{B}(D^{0}K^{*+}) = (0.11 \pm 0.07)$

 $r_B(D^{*0}K^+) = (0.113 \pm 0.025)$

The combination of all the methods can be performed giving

 $\gamma = (74 \pm 11)^{\circ}$

D. Derkach, Measurements of γ/

φЗ

Results from $B^0 \rightarrow D^0 K^{*0}$

D. Derkach, Measurements of y/

φ3

Conclusions

Combining all B-factory results, there is a strong evidence of CP violation in $B \rightarrow D^{0(*)}K^{(*)}$

Many analyses contribute. Big contributors are DK decay modes using Dalitz method.

The combination of all the method gives $\gamma = (74 \pm 11)^{\circ}$ (Bayesian approach) $\gamma = (73^{+22}_{-25})^{\circ}$ (Frequentist approach)

Well compatible with the prediction from SM

$$\gamma = (69.6 \pm 3.0)^{\circ}$$
 (Bayesian approach)
 $\gamma = (67.7 + 4.5)^{\circ}$ (Frequentist approach)

Need to reduce the error in order to see possible deviations:

FPCP-2010

Turin, 25th May, 2010

$$r_B(D^0K^+) = (0.106 \pm 0.016)$$

$$r_B(D^{*0}K^+) = (0.113 \pm 0.025)$$

$$r_B(D^0K^{*+}) = (0.11 \pm 0.07)$$

$$r_B(D^0K^{*0}) = (0.26 \pm 0.076)$$

D. Derkach, Measurements of γ/ φ3 (Bayesian approach)

20

Current Setups

3.1 GeV e^+ & 9 GeV e^- beams $L = 1.2 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ $\int L dt = 428 \text{ fb}^{-1} @ Y(4S) + \text{off} (~10\%)$

3.5 GeV e^+ & 8 GeV e^- beams $L = 1.7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ $\int L dt = 820 \text{ fb}^{-1} \text{ (a) } Y(4S) + \text{off}(\sim 10\%)$

Results from $B^+ \rightarrow D^0 K^+$

Results from $B^+ \rightarrow D^{*0}K^+$, $D^{*0} \rightarrow D^0\pi^0(D^0\gamma)$

Results from $B^+ \rightarrow D^0 K^{*+}$

