Flavor physics with CMS: Status and Perspectives

Urs Langenegger
(PSI)

Flavor Physics and CP Violation 2010
2010/05/25

• Introduction
• Data results at $\sqrt{s} = 7$ TeV
 ▶ tracks and muons
• Example Perspectives
 ▶ $B_s^0 \rightarrow \mu^+ \mu^-$
 ▶ top
Heavy Flavor Physics in CMS

- **Beauty and top quark physics**
 - production: QCD (and EW)
 - decays: FP(CP)
 - Search for ‘New Physics’
 - indirectly: b, t decays
 - directly: t production

- **Motivations**
 - interesting physics:
 - SM rediscovery and measurements
 - BSM searches
 - abundant signals from the start
 - commissioning
 - detector
 - trigger
 - data management
 - essential background determination for many other searches
Continuous Evolving Program

- Reminder:
 - 2010: roughly 100 pb^{-1} of delivered integrated luminosity at $\sqrt{s} = 7 \text{ TeV}$
 - 2011: roughly 1 fb^{-1} at $\sqrt{s} = 7 \text{ TeV}$
 - $10^{34} \text{ cm}^{-2}\text{s}^{-1}$: roughly 30 fb^{-1} per year (at $\sqrt{s} = 14 \text{ TeV}$)

- $\text{Excl } D \text{ signals}$
- J/ψ: prod./polarization
- Incl b and $\Upsilon(nS)$
- $\text{Excl } b\bar{b}$
- $\text{correlations} \rightarrow \mu^+\mu^-$
- $\text{decays} \rightarrow \mu^+\mu^-$
- $\text{UL}(B^0_s \rightarrow \mu^+\mu^-), \text{etc}$
- $\Lambda_b \rightarrow \mu^+\mu^-, \text{etc}$
- $B(B^0_s \rightarrow \mu^+\mu^-)$
- $B(B^0 \rightarrow \mu^+\mu^-)$

$c/b \text{ physics}$

tt production

$R = \frac{\Gamma(tbW)}{\Gamma(tb\gamma)}$

$\text{UL}(X \rightarrow tt)$

$\text{UL}(t \rightarrow q\gamma)$

$\text{UL}(t \rightarrow qZ)$

with many intermediate and/or improved results
The CMS Detector

- **Requirements**
 - lepton ID
 - b/τ tagging
 - jets and E_T (and affordable)

<table>
<thead>
<tr>
<th>Component</th>
<th>Characteristics</th>
<th>resolutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel</td>
<td>3/2 Si layers</td>
<td>$\delta z \approx 20 \mu m$, $\delta \phi \approx 10 \mu m$</td>
</tr>
<tr>
<td>Tracker</td>
<td>10/12 Si strips</td>
<td>$\delta (p_\perp)/p_\perp \approx 1%$</td>
</tr>
<tr>
<td>ECAL</td>
<td>PbWO$_4$</td>
<td>$\delta E/E \approx 3%/\sqrt{E} \pm 0.5%$</td>
</tr>
<tr>
<td>HCAL (B)</td>
<td>Brass/Sc, $>7.2\lambda$</td>
<td>$\delta E/E \approx 100\sqrt{E}%$</td>
</tr>
<tr>
<td>HCAL (F)</td>
<td>Fe/Quartz</td>
<td>$\delta (E_T) \approx 0.98\sqrt{\sum E_T}$</td>
</tr>
<tr>
<td>Magnet</td>
<td>4T solenoid</td>
<td>$\delta (p_\perp)/p_\perp \approx 10%$ (STA)</td>
</tr>
<tr>
<td>Muons</td>
<td>DT/CSC + RPC</td>
<td></td>
</tr>
</tbody>
</table>

Component Characteristics

- **Weight**: 12'500 t
- **Length**: 21.6 m
- **Diameter**: 15 m
- **Magnetic field**: 4 T
- **Cost**: ‘500’ MCHF
Muon Reconstruction

- Redundant precise muon trajectory measurement
 - barrel: drift tubes (tracking) plus RPC (timing)
 - endcap: cathode strip chambers (tracking) plus RPC (timing)
 - inner tracker: silicon pixel and strip detectors

- Muons
 - standalone muon: reconstructed in muon system only
 - global muon (‘GM’): outside-in standalone muon → to inner track
 - tracker muon (‘TM’): inside-out inner track → muon detector
Muon Trigger (at ‘high’ luminosity)

- Muon trigger
 - L1 trigger: DT/CSC/RPC
 - High-level trigger:
 - L2: improve L1 measurement
 - L3: combine with inner tracker (in r.o.i.)
- L3 efficiency measured in 2008 cosmic muon data taking
 - OIHit: outside-in with tracker seeds
 - OIState: outside-in with L2 seeds
 - IOHit: inside-out (low efficiency b/c pixel r/o only 1bc; cosmics asynchronous)

- HLT thresholds:
 - double muon: 3 GeV
Low-luminosity triggering

- Beam monitoring detectors used for triggering at low luminosity
 - beam scintillator counters
 - BSC1: located at ± 10.9 m inner radius 20 cm
 - BSC2: located at ± 14.4 m inner radius 4 cm
 - NIM electronics
 - beam pickup timing detectors
 - measure mirror charges of passing beam (bunches)

- Other applications:
 - beam halo triggers
 - beam gas triggers
 - zero-bias triggers
 - minimum-bias triggers

- BSC to be replaced after run 1
 - radiation damage
 - essential for HI MB triggering
Data Taking

- Early April:
 - delay scans for many subdetectors

- Except for detector studies: data taking efficiency > 90%
Detector Performance Impressions

Track multiplicity and p_T spectrum

Pixel cluster charge

- **MC simulation**
 - detector well described
 - need for some physics tuning

CMS Preliminary $\sqrt{s}=900\text{GeV}$

PV resolution

CMS-PAS-TRK-10-001

Urs Langenegger
Flavor physics with CMS: Status and Perspectives (2010/05/25) 9
V0 reconstruction

- Long-lived particles ($cT > 1$ cm)
 - oppositely-charged tracks
 - detached from primary vertex
 - forming a good secondary vertex
 - Λ: high-momentum track = p

- Track requirements
 - $N_{\text{hits}} > 5$
 - χ^2/dof < 5
 - $d_{xy}/\sigma(d_{xy}) > 0.5$

- Vertex requirements
 - χ^2/dof < 7 and $d_{xy}/\sigma(d_{xy}) > 15$

- Both lifetimes consistent with PDG

<table>
<thead>
<tr>
<th>V0</th>
<th>Data [MeV]</th>
<th>MC [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_S peak</td>
<td>497.68 ± 0.06</td>
<td>498.11 ± 0.01</td>
</tr>
<tr>
<td>K_S width</td>
<td>7.99 ± 0.14</td>
<td>7.63 ± 0.03</td>
</tr>
<tr>
<td>Λ peak</td>
<td>1115.97 ± 0.06</td>
<td>1115.93 ± 0.02</td>
</tr>
<tr>
<td>Λ width</td>
<td>3.01 ± 0.08</td>
<td>2.99 ± 0.03</td>
</tr>
</tbody>
</table>
More Baryons: $\Xi^- \rightarrow \Lambda\pi^-$, $\Omega^- \rightarrow \Lambda K^-$

- Reconstruction of $\Lambda(\pi, K)$
 - loose Λ selection
 - vertex $d_{xy} > 10\sigma$
 - track $d_0 > 0.5\sigma$
 - $|m_\Lambda - m_\Lambda^{\text{PDG}}| < 8\text{ MeV}$
 - track selection
 - $d_0^{3d} > 3\sigma$ wrt PV (w/o signal tracks)
 - kaon $p_\perp > 600\text{ MeV}$
 - charge correlation of meson tracks
 - vertexing
 - $P(\chi^2) > 1\%$
 - $d_{Vtx} > 4\sigma$

- events with single candidates only

- Masses and widths
 - consistent with PDG and MC
Candidate decay $\Xi^+ \rightarrow \bar{\Lambda} (\rightarrow \bar{p}\pi^+) \pi^+$
Particle identification: tracker dE/dx

- **Measure specific ionization energy loss**
 - analog readout of silicon strip detector
 - high purity tracks, $N_{\text{hits}} > 9$
 - robust dE/dx estimator
 \[I_h = \left(\frac{1}{N} \sum_i c_i^k \right)^{1/k}, \quad k = -2 \]

- **Inclusive reconstruction of $\phi \rightarrow K^+ K^-$**
 - Tracks: $p > 1 \text{ GeV}$ or $|m - m_K| < 200 \text{ MeV}$

CMS-PAS-TRK-10-001

CMS preliminary

$\sqrt{s} = 900 \text{ GeV}$

- 1728 ± 102 ϕ candidates
- $\text{Mass} = (1.019.58 \pm 0.22) \text{ MeV/c}^2$
- $\Sigma = (1.29 \pm 0.32) \text{ MeV/c}^2$
- Width fixed to PDG value

CMS preliminary

$\sqrt{s} = 900 \text{ GeV}$

- $dE/dx = K \frac{m^2}{p^2} + C$
- with $K = 2.468 \pm 0.009$
- with $C = 2.679 \pm 0.011$

CMS-PAS-TRK-10-001

CMS preliminary

$\sqrt{s} = 900 \text{ GeV}$

- 1728 ± 102 ϕ candidates
- $\text{Mass} = (1.019.58 \pm 0.22) \text{ MeV/c}^2$
- $\Sigma = (1.29 \pm 0.32) \text{ MeV/c}^2$
- Width fixed to PDG value
Inclusive Reconstruction of D^0

- Dataset: 27 million minimum bias events
- Decay mode reconstruction
 \[D^0 \rightarrow K^- \pi^+ \]
- Selection criteria
 - transverse momentum cuts
 \[p_\perp(K) > 1.25 \text{ GeV} \]
 \[p_\perp(\pi) > 1.0 \text{ GeV} \]
 \[p_\perp(D^0) > 3.0 \text{ GeV} \]
 - Vertexing cuts
 \[d(K, \pi) < 0.025 \text{ cm} \]
 \[\chi^2 < 4.5 \]
 \[3 < l_{xy}/\sigma(l_{xy}) < 20 \]
 \[\sigma(l_{xy}) < 0.03 \text{ cm} \]
 - D^0 momentum vs. PV-SV direction
 \[\angle(\vec{p}_{D^0}, \overrightarrow{PV} : SV) < 0.1 \]
 - allow for multiple candidates
- MC expectations
 - Peak: $1.863 \pm 0.002 \text{ GeV}$
 - Width: $0.014 \pm 0.002 \text{ GeV}$
More Open Charm: D^{*+}

- Data set: 37 million minimum bias events
- Decay mode reconstruction

$$D^{*+} \rightarrow D^0 \pi^+ \rightarrow K^- \pi^+ \pi^+_s$$

- Kinematic selection

$$p_{\perp}^{\text{track}} > 0.6 \text{ GeV}$$
$$p_{\perp}^{\pi_s} > 0.25 \text{ GeV}$$
$$p_{\perp}^{D^{*+}} > 5 \text{ GeV}$$

choose single D^{*+} candidate
(with highest transverse momentum)

- Mass windows (for other projections)

$$|m_{K\pi} - m^{D^0}_{\text{PDG}}| < 25 \text{ MeV}$$
$$|m_{K\pi\pi_s} - m_{K\pi} - \delta m_{\text{PDG}}| < 1.2 \text{ MeV}$$
and D^+

- Data set: ≈ 11 million minimum bias events
- Decay mode:
 $$D^+ \rightarrow K^- \pi^+ \pi^+$$
- Kinematic selection
 - $p_\perp > 0.1$ GeV
 - $p > 1$ GeV
- Vertexing selection
 - \vec{p}_{D^+} should point to PV (5σ)
 - PV: $P(\chi^2) > 0.01$
 - SV: $P(\chi^2) > 0.02$
 - $L/\delta(L) > 7$
- Note: D^0 vs. D^{*+} vs. D^+
 - three independent analyses
 - unified selection was not a goal
Charmonium

- This is not really flavor physics
 - but important ingredient and milestone

- Dataset: ≈ 1 nb$^{-1}$, single muon trigger
 - $p_\perp > 3$ GeV (rate limited at some point)

- Reconstruction of $J/\psi \rightarrow \mu^+\mu^-$
 - track selection
 - $N_{\text{hit}} > 10$
 - $d_0 < 5$ cm, $d_z < 20$ cm
 - vertex selection
 - $P(\chi^2) > 0.1\%$

- Yields

<table>
<thead>
<tr>
<th>Category</th>
<th>Yield</th>
<th>Mass [MeV]</th>
<th>Width [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM+GM</td>
<td>24 ± 5</td>
<td>3094 ± 9</td>
<td>35.5 ± 6.8</td>
</tr>
<tr>
<td>GM+TM</td>
<td>76 ± 12</td>
<td>3095 ± 7</td>
<td>42.5 ± 6.3</td>
</tr>
</tbody>
</table>

- Mass resolution
 - strongly pseudorapidity dependent
 - average ≈ 30 MeV with ‘100 pb$^{-1}$ alignment’
$B^0_{s} \rightarrow \mu^+ \mu^-$: Search for New Physics

- **Decays highly suppressed** in Standard Model (Artuso et al, 2008)
 - effective FCNC, helicity suppression
 - SM expectation:
 \[
 \mathcal{B}(B^0_{s} \rightarrow \mu^+ \mu^-) = (3.86 \pm 0.15) \times 10^{-9} \\
 \mathcal{B}(B^0 \rightarrow \mu^+ \mu^-) = (1.06 \pm 0.04) \times 10^{-10}
 \]
 - Cabibbo-enhancement ($|V_{ts}| > |V_{td}|$) of $B^0_{s} \rightarrow \mu^+ \mu^-$ over $B^0 \rightarrow \mu^+ \mu^-$ only in MFV models

- **Sensitivity to new physics**
 - 2HDM: $\mathcal{B} \propto (\tan \beta)^4, m_{H^+}$; MSSM: $\mathcal{B} \propto (\tan \beta)^6$
 - Constraints on parameter regions
 - ‘Measurement’ of $\tan \beta$ (Kane, et al. ph/0310042)

- **Plus: ‘time-dependent’ physics program**
 - very early data: π, K muon misid rates with $b \rightarrow \mu D^0(K^-\pi^+)X$
 - early data: $B^+ \rightarrow J/\psi K^+$, $B^0_{s} \rightarrow J/\psi \phi$ normalization/control sample
 - some more data: $\mathcal{B}(B^0_{s} \rightarrow \mu^+ \mu^-)$ upper limit
 - even more data: $\mathcal{B}(B^0_{s} \rightarrow \mu^+ \mu^-)$ measurement
$B_s^0 \rightarrow \mu^+ \mu^-$: Analysis Overview

- b-hadrons produced in
 - gluon splitting (close together)
 - flavor excitation
 - gluon-gluon fusion (back-to-back)

- Signal signature
 - two muons from one decay vertex and not much else in vicinity
 - dimuon mass around $m_{B_s^0}$

- Background composition
 - two independent semileptonic B decays (mostly from gluon splitting)
 - one semileptonic (B) decay and one misidentified hadron
 - rare single B decays (peaking and non-peaking)
 → roughly similarly important
 - no prompt+cascade muons from one single B decay (within current BG MC statistics)

⇒ High signal efficiency and high background reduction
 - one decay vertex and large/significant flight length
 - isolation of dimuon system
 - mass window, sidebands for non-peaking background estimation
MC simulations: $B^0_s \rightarrow \mu^+ \mu^-$

- **Muon selection**
 - 2 global muons (GM)
 - $p_\perp > 4 \text{ GeV}$, $|\eta| < 2.4$

- **B^0_s candidate**
 - $p_\perp > 5 \text{ GeV}$, $|\eta| < 2.4$
 - $4.8 < m_{\mu^+ \mu^-} < 6.0 \text{ GeV}$
 - Secondary vertex fit
 - $\cos(\alpha) > 0.9985$ (i.e. 3.1°)
 - $l_{3D}/\sigma_{3D} > 17.0$
 - $\chi^2 < 5.0$
 - Isolation
 - $I = \frac{p_\perp(B^0_s)}{p_\perp(B^0_s) + \sum_{trk} |p_\perp|} > 0.850$
 - using tracks with $p_\perp > 0.9 \text{ GeV}$ and $\Delta R(t, B^0_s) < 1$
\[\mathcal{B}(B_s^0 \rightarrow \mu^+\mu^-) \leq 1.6 \times 10^{-8} \]

- With 1.0 fb\(^{-1}\) at \(\sqrt{s} = 14\) TeV, expect to obtain at 90\% C.L.

Signal yield \(n_S = 2.36^{+0.076}_{-0.074}\) (stat)

Signal efficiency \(\varepsilon_S = 0.023 \pm 0.001\) (stat)

BG rejection \(\varepsilon_B = (7.82 \pm 0.369) \times 10^{-9}\) (stat)

BG: dimuons \(n_{B}^{\mu\mu} = 2.54^{+0.719}_{-0.560}\) (stat)

BG: muon+fake \(n_{B}^{\mu h} = 2.54^{+0.719}_{-0.560}\) (stat)

\[n_{B}^{\text{non-rare}} = n_{B}^{\mu\mu} + n_{B}^{\mu h} = 5.07^{+1.44}_{-1.12}\] (stat)

BG: rare \(n_{B}^{\text{rare}} = 1.45^{+0.276}_{-0.276}\) (total)

\[n_{B} = n_{B}^{\text{non-rare}} + n_{B}^{\text{rare}} = 6.53^{+2.43}_{-2.43}\] (total)

- Substantial improvement with respect to 2006
 - no pile-up, \(\sqrt{s} = 14\) TeV
 - high-luminosity trigger, no tracker muons, cut-n-count analysis
b-tagging of a different kind

- **Not** B-flavor tagging, but determination of b vs. $udsg$ jet-origin
 - impact parameter (wrt primary vertex)
 - secondary vertex reconstruction
 - leptons

CMS Preliminary

Number of Tracks in Jet

Number of Secondary Vertices

Signed 3D IP Significance

CMS Preliminary, $\sqrt{s} = 900$ GeV

CMS-PAS-TRK-10-001

Urs Langenegger

Flavor physics with CMS: Status and Perspectives (2010/05/25)

22
Top Flavor Physics: R

- Top decays to b vs all quarks

$$R = \frac{\Gamma(t \rightarrow bW)}{\Gamma(t \rightarrow qW)}$$

$$= \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2} \quad \text{(in SM)}$$

- $|V_{tb}|$ measurement (in SM with 3 generations)
- Constraints on $|V_{tb}|$ (in BSM)

- P_i: Probability to find i b-tagged jets

$$A_i(R; \varepsilon_b, \varepsilon_q) = R^2 P_i(t\bar{t} \rightarrow WWb\bar{b})$$
$$+ 2R(1 - R)P_i(t\bar{t} \rightarrow WWbq)$$
$$+ (1 - R)^2 P_i(t\bar{t} \rightarrow WWqq)$$

- In 250 pb^{-1} with dilepton $e\mu + 2$ jets sample

$$\delta R = 0.02_{\text{stat}} \oplus 0.09\varepsilon_b \oplus 0.03_{\text{syst}}$$

$$\delta \varepsilon_b = 0.02_{\text{stat}} \oplus 0.04_{\text{syst}}$$
LHC as a Top Factory

- The LHC at $\sqrt{s} = 14$ TeV is a top ‘factory’
 \[
 \sigma_{\text{tot}}(pp \rightarrow t\bar{t}) \approx 830 \text{ pb}
 \]
 - 100-fold increase of cross section wrt Tevatron
 (LHC at 10/7 TeV $\approx 50/20 \times$ Tevatron)
 - 100-fold increase of (design) luminosity

- Decays
 - $2/3$: $t \rightarrow q\bar{q}'$
 - 11%: $t \rightarrow \ell^+\nu$, $\ell = e, \mu$

- Example analysis at $\sqrt{s} = 14$ TeV
 - isolated muon $p_{\perp} > 30$ GeV
 - jets with $E_T > 65, 40, 40, 40$ GeV
 - observable: hadronic top 3-jet mass
 - In 10 pb$^{-1}$
 - 128 signal events
 - 90 background events
 \[\Rightarrow\] or: ‘recoil’ physics . . .
Top Flavor Physics: Rare Decays

- FCNC top decays are an excellent area for BSM searches

<table>
<thead>
<tr>
<th>Decay</th>
<th>SM</th>
<th>two-Higgs</th>
<th>SUSY with R</th>
<th>Exotic Quarks</th>
<th>Exper. Limits (95% CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t \to gg$</td>
<td>5×10^{-11}</td>
<td>$\sim 10^{-5}$</td>
<td>$\sim 10^{-3}$</td>
<td>$\sim 5 \times 10^{-4}$</td>
<td>< 0.29 (CDF+TH)</td>
</tr>
<tr>
<td>$t \to \gamma q$</td>
<td>5×10^{-13}</td>
<td>$\sim 10^{-7}$</td>
<td>$\sim 10^{-5}$</td>
<td>$\sim 10^{-5}$</td>
<td>< 0.0059 (HERA)</td>
</tr>
<tr>
<td>$t \to Zq$</td>
<td>$\sim 10^{-13}$</td>
<td>$\sim 10^{-6}$</td>
<td>$\sim 10^{-4}$</td>
<td>$\sim 10^{-2}$</td>
<td>< 0.14 (LEP-2)</td>
</tr>
</tbody>
</table>

- Event selection
 - 1 isolated high-p_{\perp} lepton ($p_{\perp} > 20$ GeV) + 1 high-E_T photon ($E_T > 50$ GeV)
 - exactly 1 b jet ($E_T > 40$ GeV) + 1 non-b jet ($E_T > 50$ GeV)
 - $150 < m_{\gamma q} < 200$ GeV, $\cos(t_{\gamma q}, t_{SM}) < -0.95$
 - efficiency $\varepsilon \approx 2\%$

Branching fraction measurements at 5σ
Conclusions and Outlook

- CMS has started successfully with data taking at 7 TeV
 - multitude of light and heavy particles reconstructed as expected
 - muon triggers running wide open (compared to ‘high-lumi’ trigger scenarios)

- Heavy flavor physics expectations
 - for this summer: production (QCD)
 - quarkonia ($c\bar{c}$ and $b\bar{b}$)
 - inclusive b production cross section
 - exclusive b production cross section
 - $b\bar{b}$ correlations
 - $t\bar{t}$ production cross section
 - for next year: flavor physics in B (and top) sector
 - $B_s^0 \rightarrow \mu^+\mu^-$
 - $B_s^0 \rightarrow J/\psi\phi$

- Ultimately:
 - measurement of very rare (leptonic) B_s^0 and B_d^0 decays
 - top flavor ‘recoil’ physics