Flavor physics with CMS: Status and Perspectives

Urs Langenegger (PSI)

Flavor Physics and CP Violation 2010 2010/05/25

- Introduction
- Data results at $\sqrt{s} = 7 \, {\rm TeV}$
 - tracks and muons
- Example Perspectives

$$\triangleright \ B^0_s \to \mu^+ \mu^-$$

⊳ top

Heavy Flavor Physics in CMS

 $\mathcal{L} = 10^{34} \text{ cm}^{-2} \text{ sec}^{-1}$

40 MHz

kHz

100 Hz

input

HLT

input

HLT

output

event

/ vear 10¹⁶

10¹⁴

10¹²

10

10⁸

10⁶

10²

Continuous Evolving Program

with many intermediate and/or improved results

JINST 3, S08004 (2008)

The CMS Detector

Urs Langenegger

JINST 5, T03022 (2010)

Muon Reconstruction

- Redundant precise muon trajectory measurement
 - barrel: drift tubes (tracking) plus RPC (timing)
 - endcap: cathode strip chambers (tracking) plus RPC (timing)
 - inner tracker: silicon pixel and strip detectors
- Muons
 - standalone muon: reconstructed in muon system only
 - ▷ global muon ('GM'): outside-in standalone muon → to inner track

Muon Trigger (at 'high' luminosity)

- Muon trigger
 - L1 trigger: DT/CSC/RPC
 - High-level trigger:
 - L2: improve L1 measurement
 - L3: combine with inner tracker (in r.o.i.)
- L3 efficiency measured in 2008 cosmic muon data taking
 - OIHit: outside-in with tracker seeds
 - OIState: outside-in with L2 seeds
 - IOHit: inside-out (low efficiency b/c pixel r/o only 1bc; cosmics asynchronous)

- HLT thresholds:
 - double muon: 3 GeV

Low-luminosity triggering

- Beam monitoring detectors used for triggering at low luminosity
 - beam scintillator counters
 - BSC1: located at $\pm 10.9 \,\mathrm{m}$ inner radius $20 \,\mathrm{cm}$
 - BSC2: located at $\pm 14.4\,\text{m}$ inner radius $4\,\text{cm}$
 - NIM electronics
 - beam pickup timing detectors
 - measure mirror charges of passing beam (bunches)

Other applications:

- beam halo triggers
- beam gas triggers
- zero-bias triggers
- minimum-bias triggers
- BSC to be replaced after run 1
 - radiation damage
 - essential for HI MB triggering

Data Taking

CMS: Integrated Luminosity 2010

- delay scans for many subdetectors
- Except for detector studies: data taking efficiency > 90%

Detector Performance Impressions

CMS-PAS-TRK-10-001

Data

Simulation

V0 reconstruction

- Long-lived particles ($c\tau > 1 \, \text{cm}$)
 - oppositely-charged tracks
 - detached from primary vertex
 - forming a good secondary vertex
 - \triangleright A: high-momentum track = p

Track requirements

- \triangleright $N_{\rm hits} > 5$
- $\triangleright \chi^2/dof < 5$
- $\triangleright d_{xy}/\sigma(d_{xy}) > 0.5$
- Vertex requirements
 - $\triangleright \chi^2/\text{dof} < 7 \text{ and } d_{xy}/\sigma(d_{xy}) > 15$

Both lifetimes consistent with PDG

V0	Data [MeV]	MC [MeV]	
K_S peak K_S width Λ peak Λ width	$\begin{array}{r} 497.68 \pm 0.06 \\ 7.99 \pm 0.14 \\ 1115.97 \pm 0.06 \\ 3.01 \pm 0.08 \end{array}$	$498.11 \pm 0.01 \\ 7.63 \pm 0.03 \\ 1115.93 \pm 0.02 \\ 2.09 \pm 0.03$	

CMS Preliminary

 $\sqrt{s} = 900 \text{ GeV}$ and 2360 GeV

Urs Langenegger

More Baryons: $\Xi^- \to A\pi^-$, $\Omega^- \to AK^-$

Candidate decay $\Xi^+ \to \bar{A} (\to \bar{p} \pi^+) \pi^+$

Urs Langenegger

Flavor physics with CMS: Status and Perspectives (2010/05/25)

Particle identification: tracker dE/dx

• Measure specific ionization energy loss

- analog readout of silicon strip detector
- ▷ high purity tracks, $N_{\rm hits} > 9$
- \triangleright robust dE/dx estimator
 - $I_h = \left(\frac{1}{N}\sum_i c_i^k\right)^{1/k}, k = -2$
- Inclusive reconstruction of $\phi \to K^+ K^-$

▷ Tracks: p > 1 GeV or $|m - m_K| < 200$ MeV

Inclusive Reconstruction of D^0

- Dataset: 27 million minimum bias events
- Decay mode reconstruction

 $D^0 \rightarrow K^- \pi^+$

- Selection criteria
 - ▷ transverse momentum cuts

 $p_{\perp}(K) > 1.25 \,\mathrm{GeV}$ $p_{\perp}(\pi) > 1.0 \,\mathrm{GeV}$

- $p_{\perp}(D^0) > 3.0 \,\mathrm{GeV}$
- Vertexing cuts

▷ D^0 momentum vs. PV-SV direction $\angle(\vec{p}_{D^0}, \overline{PV:SV}) < 0.1$

allow for multiple candidates

More Open Charm: D^{*+}

- Data set: 37 million minimum bias events
- Decay mode reconstruction

 $D^{*+} \rightarrow D^0 \pi_s^+ \rightarrow K^- \pi^+ \pi_s^+$

Kinematic selection

 $p_{\perp}^{\text{track}} > 0.6 \,\text{GeV}$ $p_{\perp}^{\pi_s} > 0.25 \,\text{GeV}$ $p_{\perp}^{D^{*+}} > 5 \,\text{GeV}$

choose single D^{*+} candidate (with highest transverse momentum)

Mass windows (for other projections)

$$|m_{K\pi} - m_{PDG}^{D^0}| < 25 \,\text{MeV}$$

 $|m_{K\pi\pi_s} - m_{K\pi} - \delta m_{PDG}| < 1.2 \,\text{MeV}$

... and D^+

- Data set: pprox 11 million minimum bias events
- Decay mode:

$$D^+ \rightarrow K^- \pi^+ \pi^+$$

- Kinematic selection
 - ▷ $p_{\perp} > 0.1 \, \text{GeV}$
 - $\triangleright p > 1 \,\mathrm{GeV}$
- Vertexing selection
 - $\blacktriangleright \vec{p}_{D^+}$ should point to PV (5 σ)
 - ▷ **PV:** $P(\chi^2) > 0.01$
 - ▷ SV: $P(\chi^2) > 0.02$
 - $\triangleright \ L/\delta(L) > 7$
- Note: D^0 vs. D^{*+} vs. D^+
 - three independent analyses
 - unified selection was not a goal

Charmonium

- This is not really flavor physics
 but important ingredient and milestone
- Dataset: ≈ 1 nb⁻¹, single muon trigger
 p_⊥ > 3 GeV (rate limited at some point)
- Reconstruction of $J\!/\psi \rightarrow \mu^+\mu^$
 - track selection
 - $N_{\rm hit} > 10$
 - $d_0 < 5\,\mathrm{cm}$, $d_z < 20\,\mathrm{cm}$
 - vertex selection
 - $P(\chi^2) > 0.1\%$
- Yields

Category	Yield	Mass [MeV]	Width [MeV]
GM+GM GM+TM	$\begin{array}{ccc} 24\pm & 5\\ 76\pm12 \end{array}$	$\begin{array}{c} 3094 \pm 9 \\ 3095 \pm 7 \end{array}$	$35.5 \pm 6.8 \\ 42.5 \pm 6.3$

Mass resolution

- strongly pseudorapidity dependent
- ▷ average $\approx 30 \,\text{MeV}$ with '100 pb⁻¹ alignment'

u⁺ μ⁻ mass (GeV/c)

$B_s^0 \rightarrow \mu^+ \mu^-$: Search for New Physics

- Decays highly suppressed in Standard Model (Artuso et al, 2008)
 - effective FCNC, helicity suppression
 - SM expectation:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.86 \pm 0.15) \times 10^{-9}$$
$$\mathcal{B}(B^0 \to \mu^+ \mu^-) = (1.06 \pm 0.04) \times 10^{-10}$$

- ▷ Cabibbo-enhancement $(|V_{ts}| > |V_{td}|)$ of $B_s^0 \rightarrow \mu^+ \mu^-$ over $B^0 \rightarrow \mu^+ \mu^$ only in MFV models
- Sensitivity to new physics
 - ▷ 2HDM: $\mathcal{B} \propto (\tan \beta)^4, m_{H^+}$; MSSM: $\mathcal{B} \propto (\tan \beta)^6$
 - \rightarrow Constraints on parameter regions
 - ightarrow 'Measurement' of aneta (Kane, $\mathit{et al.}$ ph/0310042)
- Plus: 'time-dependent' physics program
 - ▷ very early data: π, K muon misid rates with $b \rightarrow \mu D^0(K^-\pi^+)X$
 - ▷ early data: $B^+ \rightarrow J/\psi K^+$, $B_s^0 \rightarrow J/\psi \phi$ normalization/control sample
 - ▷ some more data: $\mathcal{B}(B^0_s \to \mu^+ \mu^-)$ upper limit
 - ▷ even more data: $\mathcal{B}(B^0_s \to \mu^+ \mu^-)$ measurement

$B_s^0 \rightarrow \mu^+ \mu^-$: Analysis Overview

- b-hadrons produced in
 - gluon splitting (close together)
 - flavor excitation
 - gluon-gluon fusion (back-to-back)
- Signal signature
 - two muons from one decay vertex and not much else in vicinity
 - \triangleright dimuon mass around $m_{B_s^0}$
- Background composition
 - \triangleright two independent semileptonic *B* decays (mostly from gluon splitting)
 - \triangleright one semileptonic (B) decay and one misidentified hadron
 - rare single B decays (peaking and non-peaking)
 - \rightarrow roughly similarly important

no prompt+cascade muons from one single B decay (within current BG MC statistics)

- \Rightarrow High signal efficiency and high background reduction
 - one decay vertex and large/significant flight length
 - isolation of dimuon system
 - mass window, sidebands for non-peaking background estimation

$B_s^0 \to \mu^+ \mu^-$: Expected Performance

• With 1.0 fb⁻¹ at $\sqrt{s} = 14$ TeV, expect to obtain at 90% C.L.

- no pile-up, $\sqrt{s} = 14 \,\text{TeV}$

+ high-luminosity trigger, no tracker muons, cut-n-count analysis

b-tagging of a different kind

- Not *B*-flavor tagging, but determination of *b* vs. *udsg* jet-origin
 - impact parameter (wrt primary vertex)
 - secondary vertex reconstruction

Top Flavor Physics: *R*

Top decays to b vs all quarks

$$R = \frac{\Gamma(t \to bW)}{\Gamma(t \to qW)}$$

$$= \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2} \quad (\text{in SM})$$

▷ |V_{tb}| measurement (in SM with 3 generations)
 ▷ constraints on |V_{tb}| (in BSM)

• P_i : Probability to find *i b*-tagged jets

$$A_i(R;\varepsilon_b,\varepsilon_q) = R^2 P_i(t\bar{t} \to WWb\bar{b}) + 2R(1-R)P_i(t\bar{t} \to WWbq) + (1-R)^2 P_i(t\bar{t} \to WWqq)$$

• In 250 pb⁻¹ with dilepton $e\mu + 2$ jets sample $\delta R = 0.02_{\text{stat}} \oplus 0.09_{\varepsilon_b} \oplus 0.03_{\text{syst}}$ $\delta \varepsilon_b = 0.02_{\text{stat}} \oplus 0.04_{\text{syst}}$

LHC as a Top Factory

Top Flavor Physics: Rare Decays

• FCNC top decays are an excellent area for BSM searches

Decay	SM	two-Higgs	SUSY with R	Exotic Quarks	Exper. Limits(95% CL)
t ightarrow gq	5×10^{-11}	$\sim 10^{-5}$	$\sim 10^{-3}$	$\sim 5 imes 10^{-4}$	< 0.29 (CDF+TH)
$t ightarrow \gamma q$	5×10^{-13}	$\sim 10^{-7}$	$\sim 10^{-5}$	$\sim 10^{-5}$	< 0.0059 (HERA)
$t \rightarrow Zq$	$\sim 10^{-13}$	$\sim 10^{-6}$	$\sim 10^{-4}$	$\sim 10^{-2}$	< 0.14 (LEP-2)

• Event selection

- ▷ 1 isolated high- p_{\perp} lepton ($p_{\perp} > 20 \text{ GeV}$) + 1 high- E_T photon ($E_T > 50 \text{ GeV}$)
- ▷ exactly 1 *b* jet ($E_T > 40 \text{ GeV}$) + 1 non-*b* jet ($E_T > 50 \text{ GeV}$)
- ▷ $150 < m_{\gamma q} < 200 \,\text{GeV}, \, \cos(t_{\gamma q}, t_{SM}) < -0.95$
- \rightarrow efficiency $\varepsilon \approx 2\%$

Conclusions and Outlook

- CMS has started successfully with data taking at 7 TeV
 - multitude of light and heavy particles reconstructed as expected
 - muon triggers running wide open (compared to 'high-lumi' trigger scenarios)
- Heavy flavor physics expectations
 - ▷ for this summer: production (QCD)
 - quarkonia ($c\overline{c}$ and $b\overline{b}$)
 - inclusive b production cross section
 - exclusive b production cross section
 - $b\overline{b}$ correlations
 - $t\overline{t}$ production cross section
 - ▶ for next year: flavor physics in *B* (and top) sector

$$B_s^0 o \mu^+ \mu^-$$

 $B_s^0 o J/\psi \phi$

• Ultimately:

- \triangleright measurement of very rare (leptonic) B_s^0 and B_d^0 decays
- top flavor 'recoil' physics