Baryonic B Decays

Jing-Ge Shiu (NTU)

FPCP 2010, Torino, Italy May. 26, 2010

J.-G. Shiu

Baryonic B Decays/FPCP2010

1

Outline

Introduction

Profound baryonic decays: a unique feature of B meson

➤Well established after few years of B-factory running

 \checkmark (BF(4-body)>) BF(3-body) > BF(2-body)

✓ threshold enhancement in the baryon-antibaryon system

➤Searching ground for exotic states

>May have unexpectedly large CP violation in charmless modes

- •Charmed baryonic decays
- •Charmless baryonic decays

•Summary

Two B Factories

•final Belle data taking is ongoing (~1 month)

 large data sample has been reprocessed and is ready to be analyzed

J.-G. Shiu

Charmed baryonic decays

Recent results:

$$\overline{B}^{0} \to \Lambda_{c}^{+} \overline{p}; \quad B^{-} \to \Lambda_{c}^{+} \overline{p} \pi^{-}$$

$$\overline{B}^0 \to \Lambda_c^+ \overline{P} K^- \pi^+$$

semileptonic B decays into Λ_c^+

FRL 37,242001(2000)(132101 DD)

$$\frac{BF(B^- \to \Lambda_c^+ \overline{p} \pi^-)}{BF(\overline{B}^0 \to \Lambda_c^+ \overline{p})} = 15.4 \pm 1.8 \pm 0.3$$

consistent with theoretical description in W.-S. Hou and A. Soni, PRL 86, 4247 (2001)

J.-G. Shiu

- first observation of $\Sigma_c(2800)^0$ M = (2846±8±10) MeV, $\Gamma = 86^{+33}_{-22}$ MeV
- about $\frac{1}{4}$ of $B^- \rightarrow \Lambda_c^+ \overline{p}_{\pi}^-$ decays through a Σ_c resonance.

J.-G. Shiu

 $\overline{B}^0 \to \Lambda_c^+ \overline{p} K^- \pi^+$

PRD 80, 051105 (R) (2009) 467 M BB

Study one Cabibbo-suppressed mode and compare it with a favored mode

$$BF(\overline{B}^0 \to \Lambda_c^+ \overline{p} K^- \pi^+) = (4.33 \pm 0.82 \pm 0.33 \pm 1.13) \times 10^{-5}$$

$$BF(\overline{B}^{0} \to \Lambda_{c}^{+} \overline{p} \pi^{-} \pi^{+}) = (12.6 \pm 1.3 \pm 0.33) \times 10^{-4} \qquad \text{CLEO PRD 66, 091101 (2002)} \\ \text{Belle PRD 75, 011101 (2007)}$$

Ratio = 0.038 ± 0.009 $|V_{us}/V_{ud}|^2$ = (0.0536±0.0020) (PDG 2008)

J.-G. Shiu

 $\overline{B}^{0} \rightarrow \Lambda_{c}^{+} \overline{P} K^{-} \pi^{+}$

PRD 80, 051105 (R) (2009) 467 M $B\overline{B}$

Intermediate states $\Sigma_c(2455)^{++}$ and \overline{K}^{*0}

 $BF(\overline{B}^{0} \to \sum_{c} (2455)^{++} \overline{p} K^{-}) = (1.11 \pm 0.30 \pm 0.09 \pm 0.29) \times 10^{-5}$ $BF(\overline{B}^{0} \to \sum_{c} (2455)^{++} \overline{p} \pi^{-}) = (2.3 \pm 0.3 \pm 0.6) \times 10^{-4}$ $CLEO \ PRD \ 66, \ 091101 \ (2002)$ $Belle \ PRD \ 75, \ 011101 \ (2007)$

Ratio = 0.048±0.016

$$BF(\overline{B}^0 \to \Lambda_c^+ \overline{p} \,\overline{K}^{*0}) < 2.42 \times 10^{-5} \quad @90\% CL$$

Semileptonic decays into Λ_c^+

hep-ex 0808.0011 $460 \mathrm{M} \mathrm{B} \overline{\mathrm{B}}$

10

J.-G. Shiu

Charmless baryonic decays

Recent results:

 $B^0 \to p \overline{\Lambda} \pi^-$

 $\checkmark B \to \Lambda \overline{\Lambda} h$

 $B^+ \to p \overline{\Lambda} \pi^+ \pi^-$

 $\rightarrow p\Lambda\pi^{-}$

- near-threshold enhancement also seen
- $\overline{\Lambda}$ polarization study
 - > consistent with full longitudinal right-handed polarization at large $E_{\overline{\Lambda}}^*$

J.-G. Shiu

$$B \to \Lambda \overline{\Lambda} h, h = K^{\pm}, K^{*(\pm,0)}, \overline{D}_0$$

PRD 79, 052006 (2009)

$$B \to p\overline{\Lambda}h, h = \pi^{\pm}, K^{\pm}, K^{*(\pm,0)}$$

PRD 76, 052004 (2007)

$$B \rightarrow p\bar{p}h, h = \pi^{\pm}, K^{\pm}, K^{*(\pm,0)}$$

PRL 100, 251801 (2008)

Compare $\Lambda \overline{\Lambda} h$ with $p \overline{p} h$ results to understand the dominant underlying physics

J.-G. Shiu

PRD 79, 052006 (2009) 657 M BB

PRD 79, 052006 (2009) 657 M BB

•A threshold enhancement is also present in these newly observed modes.

threshold enhancement: in baryonic B decays, a signal enhancement in the baryon-antibaryon system

J.-G. Shiu

PRD 79, 052006 (2009) 657 M BB

• Fit results in bins of $cos\theta_{\Lambda}$ with $M_{\Lambda\Lambda}^{-}$ <2.85GeV/c²

Branching Fractions (10^{-6})		Branching Fractions (10^{-6})	
$B^0 \rightarrow p \bar{p} K^0$	$2.51^{+0.35}_{-0.29} \pm 0.21$	$B^0 \rightarrow \Lambda \bar{\Lambda} K^0$	$4.76^{+0.84}_{-0.68} \pm 0.61$
$B^0 o p \bar{p} K^{*0}$	$1.18^{+0.29}_{-0.25} \pm 0.11$	$B^{f 0} ightarrow \Lambda ar{\Lambda} K^{*f 0}$	$2.46^{+0.87}_{-0.72} \pm 0.34$
$B^+ \rightarrow p \bar{p} K^+$	$5.54^{+0.27}_{-0.25} \pm 0.36$	$B^+ \rightarrow \Lambda \bar{\Lambda} K^+$	$3.38^{+0.41}_{-0.36} \pm 0.41$
$B^+ \to p \bar{p} K^{*+}$	$3.38^{+0.73}_{-0.60} \pm 0.39$	$B^+ \rightarrow \Lambda \bar{\Lambda} K^{*+}$	$2.19^{+1.13}_{-0.88} \pm 0.33$
$B^+ ightarrow p \bar{p} \pi^+$	$1.60^{+0.22}_{-0.19} \pm 0.12$	$B^+ ightarrow \Lambda ar{\Lambda} \pi^+$	< 0.94

PLB659:80 (2008)

PRD79:052006 (2009)

PRL100:251801 (2008)

- •the branching fractions indicate no one to one correspondence \succ comparably smaller BF(B⁺ $\rightarrow \Lambda \Lambda \pi^{+}$) \succ considerably larger BF(B⁰ $\rightarrow \Lambda \Lambda K^{0}$)
- •lack of peaking feature in $\cos\theta_{\Lambda}$ distribution for B⁺ $\rightarrow \Lambda \overline{\Lambda} K^+$
- •the underlying physics between $B \rightarrow \Lambda \Lambda h$ and $B \rightarrow pph$ might be different

PRD 80, 111103 (R) (2009) 657 M BB

•Many 3-body charmless baryonic decays have been studied.

How about 4-body modes?
 > BF hierarchy ?
 > Threshold-enhancement?

 $B \to \Lambda \overline{\Lambda} h, h = K^{\pm}, K^{*(\pm,0)}, \overline{D}_{0}$ PRD 79, 052006 (2009) $B \to p \overline{\Lambda} h, h = \pi^{\pm}, K^{\pm}, K^{*(\pm,0)}$ PRD 76, 052004 (2007) $B \to p \overline{p} h, h = \pi^{\pm}, K^{\pm}, K^{*(\pm,0)}$ PRL 100, 251801 (2008)

charmed modes: $b \rightarrow c$ tree diagram $BF(B^0 \rightarrow p\overline{\Lambda}_c^-\pi^+\pi^-) > BF(B^+ \rightarrow p\overline{\Lambda}_c^-\pi^+) > BF(B^0 \rightarrow p\overline{\Lambda}_c^-)$ $b \rightarrow s$ penguin or $b \rightarrow u$ tree diagrams $BF(B^+ \rightarrow p\overline{\Lambda}\pi^+\pi^-) > BF(B^0 \rightarrow p\overline{\Lambda}\pi^-) > BF(B^+ \rightarrow p\overline{\Lambda})$

PRD 80, 111103 (R) (2009) 657 M BB

J.-G. Shiu

PRD 80, 111103 (R) (2009) 657 M BB

- •first observation of 4-body charmless baryonic decay
- •BF(4-body)>BF(3-body)>BF(2-body)
- Multi-body hierarchy holds for charmless baryonic B decays
- near-threshold enhancement also seen

Summary

✓ More baryonic modes have been observed > $B^- \rightarrow \Sigma_c (2800)^0 \overline{p}$

- $> B \to \Lambda \overline{\Lambda} K^0, B \to \Lambda \overline{\Lambda} K^{*0}, B^+ \to p \overline{\Lambda} \pi^+ \pi^-$
- Threshold-enhancement exists in all modes examined so far
- ✓ Comparison between $p\overline{p}h$ and $\Lambda\overline{\Lambda}h$ shows that the dominant underlying decay diagrams may be different
- ✓ First 4-body charmless baryonic decay has been observed
- ✓BR(4-body)≥BR(3-body)>BR(2-body), for both charm and charmless baryonic modes.

BACKUP slides

J.-G. Shiu

Spin of $\Sigma_c(2455)^0$ and Λ_c^+p Threshold Enhancement

• $\Sigma_c(2455)^0$ is consistent with J=1/2, with J=3/2 excluded at >4 σ level.

•Threshold enhancement common in other baryonic modes as: $B \rightarrow p\overline{p}K \text{ and } B \rightarrow Dp\overline{p}(\pi)$

Semileptonic decays into Λ_c^+

BaBar hep-ex 0808.0011 (preliminary)

Discussion based on quark diagrams

cont'd

• B to $\Lambda\Lambda K$ mode might behave like B to $p\overline{\Lambda}\pi$ mode?

PRD 80, 111103 (2009) $657\,M\,B\overline{B}$

Blue: background

Black: total

J.-G. Shiu