$B \to D^{(*)} \, \tau^+ \nu_\tau$ and $B^+ \to \tau^+ \nu_\tau$

Andrzej Bożek representing the Belle Collaboration INP PAN Kraków

Flavor Physics and CP Violation 2010 Torino, Italy 25-29 May 2010 $B^+ \rightarrow \tau^+ \nu_{\tau}$ $B \rightarrow D^{(*)} \tau^+ \nu_{\tau}$ Summary

Motivation

poorly known: multiple v's in final states \implies experimentaly difficult !

Experimental Techniques

B \rightarrow τν_τ event at **B**-factories

$$B \rightarrow \tau v_{\tau}$$

purely leptonic B decay: W-mediated annihilation

Sensitive to Charged Higgs

theoretically very clean, SM BF:

$$BF(B \to l\nu) = \frac{G_F^2 m_B}{8\pi} m_l^2 (1 - \frac{m_l^2}{m_B^2})^2 (f_B^2 |V_{ub}|^2 \tau_B$$

Decay rate simply related to B meson decay constant f_B and |Vub|

 $\rightarrow \tau^{-} V_{\tau}) = (1.20 \pm 0.25) \times 1$

providing f_B is known

 $|V_{ub}| = (4.32 \pm 0.16 \pm 0.29) \times 10^{-3}$ HFAG ICHEP08 $f_B = 190 \pm 13$ MeV, HPQCD arXiv:0902.1815

H[±] effects to branching fraction:

$$BF(B^+ \to \tau^+ \nu_{\tau}) = BF(B^+ \to \tau^+ \nu_{\tau})_{SM} \times r_H$$
$$r_H = (1 - \frac{m_B^2}{m_H^2} \tan^2 \beta)^2$$

W. S. Hou, PR D 48, 2342 (1993)

$B \rightarrow \tau v - tag side$

Reconstruct B_{tag} (in exclusive mode)

$B \rightarrow \tau \nu$ - signal side

- Data

B⁰B⁰

0.5

 $B^+B^- + B^0\overline{B^0}$

E_{ECL} (GeV)

signal side signature:

- results $\mathbf{B} \rightarrow \tau v_{\tau}$ BELLE 657 M **B**B D(*)I v tag Events / 0.05 GeV 320 520 Semileptonic tag $B^- \rightarrow D^{*0} l^+ \nu$, $D^0 l \nu$ hep-ex/0809.3834 arXIv: 0809.3834 $D^{*0} \rightarrow D^0 \pi^0$, $D^0 \gamma$ Preliminary $D^0 \rightarrow K^-\pi^+, K^-\pi^+\pi^-\pi^+, K^-\pi^+\pi^0$ Signal $B \rightarrow D^{*0} I_V$ control sample 200 150 Events/0.025GeV 300 100 $B \rightarrow D^{*0} | v \text{ signal}$ 250 w/ semileptonic tags 50 background visible products 200 00 + Data 0.2 0.6 0.8 0.4 1.2 of τ decay E_{FCI} (GeV) MC 150 **h** = π^{\pm} , **l** = **e**[±], μ^{\pm} 100 50 $N_{sig} = 154^{+36}_{-35}$ (stat) $^{+20}_{-22}$ (syst) 0 $\Rightarrow \mathcal{B}(B \rightarrow \tau v) = (1.65^{+0.38+0.35}_{-0.37-0.37}) \times 10^{-4}$ 0.2 0 0.4 0.6 0.8 1.2 E_{FCI} (GeV) Obtained Br($B^{-} \rightarrow D^{*0} I_{V}$) = 6.0±0.2 (stat) % 3.8σ

$B \rightarrow \tau v_{\tau}$ - results

Hadronic tag (383MBB) $\mathscr{B}(B \rightarrow \tau \nu) = (1.8^+ 0.9 \pm 0.4 \pm 0.2) \times 10^{-2}$

Semileptonic tag (459MBB) $\mathscr{B}(B \rightarrow \tau v) = (1.7 \pm 0.8 \pm 0.2) \times 10^{-2}$

Hadronic tag (449MBB) $\mathscr{B}(B \rightarrow \tau v) = (1.79^{+0.56+0.46}_{-0.49-0.51}) \times 10^{-2}$ Semileptonic tag (657MBB) $\mathscr{B}(B \rightarrow \tau v) = (1.65^{+0.38+0.35}_{-0.37-0.37}) \times 10^{-2}$

$B \rightarrow \tau v_{\tau}$ - results

Naïve world average $Br(\tau v) = [1.73 \pm 0.35] \times 10^{-4}$ Effect of Charged Higgs W. Hou, Phys. Rev. D48, 2342 (1993) $Br = Br_{SM} \times r_{H}$ $r_{H} = \left(1 - \frac{m_{B}^{2} \tan \beta^{2}}{m_{H}^{2}} \frac{1}{1 + \varepsilon_{0} \tan \beta}\right)^{2}$ $\tan \beta = \frac{v_u}{v_r}$ SUSY Loop correction $\varepsilon_0=0$ for Type-II 2HDM 2.5 -0.01 $\tilde{\ell}_0 \frac{m_{H^{\pm}}}{100 \, \text{GeV}} =$ 1.5 5. 1 0.5 0.1 0.2 0.3 0.4 0

 $\tan\beta/m_{H^{\pm}}$

$Br_{SM}(\tau v) = [1.20 \pm 0.25] \times 10^{-4}$

Based on $f_{\rm B}$ from HPQCD and |Vub| from

HFAG (BLNP,ICHEP08) Constraint on charged Higgs

B→τ $ν_{\tau}$ - results

predicted by the CKM fit.

$B \rightarrow D^{(*)} \tau v_{\tau}$

✓ Alternative theory uncertainties:

- free from f_B , depends on the $B \rightarrow D^{(*)} \tau v_{\tau}$ formfactors;
- $|V_{cb}|$ cancels out in the ratio R =BF(B \rightarrow D τv_{τ})/ BF(B \rightarrow DI v_{l})
- ✓ 3-body decay \Rightarrow more observables;

q²-distribution, τ polarization, D* polarization; possible $\mathcal{O}(1)$ effects from NP

inclusive $BF(b \rightarrow c\tau v_{\tau}) = (2.48 \pm 0.26)\%$ from LEPPDG 2007A. Cornell et al., arXiv:0906.1652 [hep-ph]Universality between :H-b-u vertex measured in $B \rightarrow \tau v_{\tau}$ H-b-c vertex measured in $B \rightarrow D\tau v_{\tau}$ H-b-t vertex measured in direct production by LHC.

background suppression

exploit signal-side variables:

E_{mis}≡E_{beam}-E_{D*}-E_e: **1.9<E_{mis}<2.6 GeV**

 $B^+ \rightarrow D^{(*)0} \tau^+ \nu_{\tau}$

657 M **B**B

Extension of the same analysis for B⁺ decays.

- $D^{*0\leftrightarrow} D^0$ cross-feeds \Rightarrow simultaneous extraction of signals in $B^+ \rightarrow D^{*0} \tau^+ \nu_{\tau}$ and $B^+ \rightarrow D^0 \tau^+ \nu_{\tau}$;
- signal extraction from UML fit to 2 observable M_{tag} and P_{D^0} (P_{D^0} = momentum of \overline{D}^0 in Υ (4S) rest frame);
- simultaneous fit to 13 decay chains with floating 2 signal BF's and 13 background normalizations;

```
Signal sub-decay modes:

D^{*0} \rightarrow \overline{D}{}^{0}\pi^{0}

\tau \rightarrow evv, \ \overline{D}{}^{0} \rightarrow K^{+}\pi^{-}

\tau \rightarrow evv, \ \overline{D}{}^{0} \rightarrow K^{+}\pi^{-}\pi^{0}

\tau \rightarrow \pi v, \ \overline{D}{}^{0} \rightarrow K^{+}\pi^{-}

\tau \rightarrow \mu vv, \ \overline{D}{}^{0} \rightarrow K^{+}\pi^{-}

\tau \rightarrow \mu vv, \ \overline{D}{}^{0} \rightarrow K^{+}\pi^{-}
```


B⁺→**D**^{(*)0}τ⁺ν_τ - results

 $B^+ \rightarrow D^{(*)0} \tau^+ \nu_{\tau}$

PRD 79, 092002 (2009)

- 238M BB
- · Hadronic tags.
- Signal characterized by large MM².
- Simultaneous extraction of $D\tau v/D^*\tau v$.
- Also measure decay distributions for the first time.

	R(%)	Ns	Signif.	
$D^0 \: \tau \: \nu$	$31.4 \pm 17.0 \pm 4.9$	35.6±19.4	1.8(1.8)	
$D^{\scriptscriptstyle +} \ \tau \ \nu$	$48.9 \pm 16.5 \pm 6.9$	23.3±7.8	3.3(3.6)	
$D^{\star 0}\tau\nu$	$34.6 \pm 7.3 \pm 3.4$	92.2 ± 19.6	5.3(5.8)	
D*+ τ ν	$20.7 \pm 9.5 \pm 0.8$	15.5 ± 7.2	2.7(2.7)	
D ⁰ τν + D ⁺ τν: 3.6 (4.9) σ				

 $B^+ \rightarrow D^{(*)0} \tau^+ \nu_{\tau}$

- 238M BB
- Hadronic tags.
- Signal characterized by large MM².
- Simultaneous extraction of $D\tau v/D^*\tau v$.
- Also measure decay distributions for the first time.

P_{lep} distributions

	R(%)	Ns
$D^0 \: \tau \: \nu$	$31.4 \pm 17.0 \pm 4.9$	35.6 ± 19.4
$D^{\scriptscriptstyle +} \ \tau \ \nu$	$48.9 \pm 16.5 \pm 6.9$	23.3±7.8
$D^{\star 0}\tau\nu$	$34.6 \pm 7.3 \pm 3.4$	92.2±19.6
$D^{*\star}\tau\nu$	$20.7 \pm 9.5 \pm 0.8$	15.5 ± 7.2
D ⁰ τν +	D+ τν: 3.6 (4.9) σ	

 $\mathcal{B}(B \to \overline{D}\tau^+\nu) = (0.86 \pm 0.24 \pm 0.11 \pm 0.06)\% \quad (3.6\sigma)$ $\mathcal{B}(B \to \overline{D}^*\tau^+\nu) = (1.62 \pm 0.31 \pm 0.10 \pm 0.05)\% \quad (6.2\sigma)$ First measurem't of kinematic distributions: q^2 , $|\mathbf{p}_{\ell}^*|$

 $B^+ \rightarrow D^{(*)0} \tau^+ \nu_{\tau}$

- 657M BB
- · Hadronic tags.

R(%)

70.2 +18.9 +11.0 -9.1

47.6 +21.6 +6.3

46.8 +10.6 +6.2

48.1 +14.0 +5.8

 $D^0 \tau \nu$

D⁺ τ v

 $D^{*0} \tau v$

 $D^{*+} \tau v$

- Extract signals in (MM², E_{ECL}) distribution.
- Simultaneous extraction of Dτv/D*τv.

Ns

98.6 +26.3

17.2 +7.7

99.8 +22.2

25.0 +7.2

SUMMARY

Rich program of $B \rightarrow E_{mis}$ studies is being pursued in B-factories

 Measurements of (semi)tauonic-B decays are now well established and provide constraints on charged Higgs sector that are competitive with direct searches;

```
•high luminosity B-factories made possible studies of B meson decays to final states with \tau-leptons;
```

measured BF's are consistent within experimental uncertainties with expectations of the SM but:

```
large BF(B \rightarrow \tau \nu)
large BF(B \rightarrow D^* \tau \nu)
```

Looking forward for the Belle results with full data sample of 772 M $B\overline{B}$, it has been reprocessed with much improved charged particle tracking.

and to Super B-factories

 $B^{+/0} \rightarrow D^{(*)} \tau^+ \nu_{\tau}$

Semileptonic vs purely leptonic

 $B \to D^{(*)} \tau \nu_{\tau}$ has more observables (τ and D^* polarizations) than $B^+ \to \tau^+ \nu_{\tau}$ decay $B \to D \tau^+ \nu_{\tau}$ are more sensitive to H^{\pm} contribution but experimentally more challenging than $B^0 \to D^{*-} \tau^+ \nu_{\tau}$ modes $B^0 \to D^{*-} \tau^+ \nu_{\tau}$ with longitudinally polarized D^* are also sensitive to new physics² $B^0 \to D^{*-} \tau^+ \nu_{\tau}$ are the main background for $B \to D \tau^+ \nu_{\tau}$ *Hbc* and *Hbu* vertices complementary with *Htb* searches at LHC

Selection Criteria

- Optimized to maximize $FoM = N_{sig} / \sqrt{N_{sig} + N_{BG}}$ in $E_{ECL} < 0.2 \text{ GeV}$ \Box separately for $\tau \rightarrow Ivv$ and πv modes
- **<u>Blind analysis</u>**: E_{ECL} < 0.4 GeV is masked until selection criteria are finalized
- Tagging side

Signal side

N_{sig} extracted from E_{ECL}

separation expected

Clear Signal and BG

 $\Box \text{ Identified using a kinematic relation } \cos \theta_{B-D^{(*)}l} = \frac{2E_B E_{D^{(*)}l} - M_B^2 - M_D^2}{2P_B P_{D^{(*)}l}}$

B⁺→D^{(*)0}τ⁺ν_τ Background

