

Semileptonic Charm Decays

Karl M. Ecklund Rice University FPCP 2010 Torino

Charm's role in flavor physics

Flavor physics:

- Overconstrain V_{CKM}
- Inconsistency → new physics
 Unitarity Triangle Constraints

- sin 2β is theoretically clean
- IV_{ub}I is not
- B mixing is not Hadronic uncertainties confound extraction of weak physics

Charm decay measurements can validate QCD corrections needed to extract weak physics parameters from experimental observables: New physics or QCD?

26 May 10

IV_{ub}l from semileptonic B decay

If quarks were like leptons:

$$\Gamma(b \to uev) = \frac{G_F^2 m_b^5}{192\pi^3} |V_{ub}|^2$$

- Rate goes like $|V_{ub}|^2$
- But quarks always in hadrons
 - QCD form factor f₊(q²)
 needed to extract weak
 interaction physics

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 p_\pi^3 |f_+(q^2)|^2$$

UT Constraint from IV_{ub}I

$|V_{ub}|$ from $B \rightarrow \pi \ell \nu$:

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 p_\pi^3 |f_+(q^2)|^2$$

Form factor f(q²):

- Hard to calculate
- Limits IV_{ub}I precision
- Lattice QCD can do from first principles
- $D \rightarrow \pi \ell v$ to $B \rightarrow \pi \ell v$ are both "heavy to light" decays
- Precise measurement of $D \rightarrow \pi \ell v$ can calibrate LQCD and allow a precise extraction of $IV_{ub}I$ from $B \rightarrow \pi \ell v$
- Absolute rate and shape is a stringent test of theory

26 May 10

Semileptonic Decays

Decay rate depends on kinematics and V_{CKM} Form factor encapsulates QCD bound-state effects

Consider Pseudoscalar final states: K, π

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{cx}|^2 p_X^3 |f_+(q^2)|^2$$

$$q^{2} = (p_{D} - p_{X})^{2}$$

= $M_{D}^{2} + M_{X}^{2} - 2E_{X}M_{D} + 2\vec{p}_{D}\cdot\vec{p}_{X}$

Charm Semileptonic Form Factors

- Pole ansatz:
 - dominated by lowest lying vector meson H* with correct flavor
 - e.g. D^* for $D \rightarrow \pi$
 - $D_s * for D \rightarrow K$
- Modified pole:

Becirevic & Kaidalov PLB 478, 417 (2000)

Analyticity expansions:

Becher & Hill PLB 633, 61 (2006)

- expand in z around t_0
- better convergence
- 2 or 3 parameters

$$f_{+}(q^{2}) = \frac{1}{P(q^{2})\phi(q^{2},t_{0})} \sum_{k=0}^{\infty} a_{k}(t_{0}) \left[z(q^{2},t_{0}) \right]^{k}$$

$$z(q^2, t_0) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}$$

 $\left|f_{+}\left(q^{2}\right)\right| = -\frac{1}{\left(q^{2}\right)}$

$$t_{\pm} = (m_D \pm m_X)^2$$

 $\frac{q^2}{1-q^2}$

Belle $D^0 \rightarrow \pi^- \ell^+ \nu \& D^0 \rightarrow K^- \ell^+ \nu$

PRL 97 061804(2006)

Uses fully reconstructed $e^+e^- \rightarrow D^{(*)}D^*X$ events $\sqrt{s}=10.6$ GeV

Allows direct count of # D⁰ Tag side:

- D⁰→K⁻(nπ)⁺, n=1,2,3
- Also use D*->D⁰π tags
 Signal side:
- $D^{*+} \rightarrow D^0 \pi^+$
 - Kinematic fit to event
 - Reconstruct mass of D⁰
 - \circ No decay products needed

- # D⁰ = 56,461±309±830
- Look for SL decays:
 - $\circ D^0 \rightarrow \pi/K^-\ell^+\nu$
 - Neutrino inferred from missing
 E,p
- ~2500 Kev candidates
- BF = (3.45±0.07±0.20)%
- ~230 $\pi \ell v$ candidates
- $BF = (25.5 \pm 1.9 \pm 1.6) \times 10^{-4}$

Belle $D^0 \rightarrow \pi^- \ell^+ \nu \& D^0 \rightarrow K^- \ell^+ \nu$

Excellent q² resolution: $\sigma(q^2)=0.017 \text{ GeV}^2$ Measure rate directly in q² bins

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{cx}|^2 p_X^3 |f_+(q^2)|^2$$

Compare to LQCD Form Factor Simple Pole parameterization Modified Pole Model

PRD 76 052005 (2007) 75 fb⁻¹

BaBar $D^0 \rightarrow K^-e^+\nu$

$e^+e^-\rightarrow c\bar{c}$ at $\sqrt{s}=10.6$ GeV

- Reconstruct $D^{*+} \rightarrow \pi^+ D^0$ and signal D⁰→Kev
- Estimate p_D and E_v with remaining event & kinematic fits
- Use Neural Nets to suppress backgrounds

- high statistics: ~74,000
- good S/N

$$q^2 = (p_D - p_X)^2$$

85k signal/11k background

 Corrected spectrum compared to LQCD¹, FOCUS²

¹ Aubin et al. PRL 94, 011601 (2005)

² PLB607, 233 (2005)

26 May 10

CLEO-c D→Kev and π ev

- Analysis of full CLEO-c
 ψ(3770) dataset 818 pb⁻¹
- D tag reconstruction
 - 9 hadronic decay modes
 - exceptionally clean events
 - excellent kinematic resolution
- Semileptonic modes
 - D⁰→K⁻e⁺v
 - ∘ D+→ \overline{K}^0e^+v
 - $\circ D^0 \rightarrow \pi^- e^+ v$
 - $D^+ \rightarrow \pi^0 e^+ v$

3 D⁰ modes, 6 D⁺ modes

Signal Side Reconstruction

- Against the tagged D
 pion candidate
 - with dE/dx and RICH
 - positron candidate
- Fit U for signal
 - $U \equiv E_{\rm miss} \left| \mathbf{p}_{\rm miss} \right|$
- Peaks at 0 for signal
 - kinematic separation for backgrounds
 - Ke⁺v cross feed to πe^+v
 - $\rho e^+ \nu$ from known BF
- Fit four modes in q² bins

Signal Side Reconstruction

 Against the tagged D kaon candidate with dE/dx and RICH positron candidate Compared to pi mode Higher statistics DD background 0 • Fit four modes in q² bins \circ more q² bins in Ke⁺v • Also include K⁰ and π^0

Partial Rates

- Extract rates from yields in q² bins, eff. matrix, # tags
- Good agreement across tag modes

26 May 10

PRD 80 032005 (2009) CLEO-c 818 pb⁻¹ Form factors

- Extract f₊(q²) using V_{cd}, V_{cs} from CKM Unitarity (PDG)
- Compare to Lattice QCD
 - ^o Aubin et al. PRL 94, 011601 (2005), C. Bernard et al. PRD 80 034026 (2009)
 - Experimental stat+syst uncertainties smaller than LQCD shown in bands
 - Better agreement at low q²
 - Isospin symmetry appears to be good
- Curve is modified pole parameterization BK PLB 478 417 (2000)

26 May 10

- Take f₊(q²) from LQCD, determine V_{CKM}
- Agreement with CKM unitarity, neutrino scattering, $D_s {\rightarrow} \ell \nu$
- LQCD uncertainty >> experimental stat+syst uncertainty

0

Form Factor Parameterizations

- Comparison of 2 (dashed) and 3 (solid) parameter fits to Becher Hill series
 - There is a slight preference for 3 parameters in $D^0 \rightarrow \pi^- e^+ v$
- BK, modified pole, simple pole models give similar quality fits
 - when normalization and shape parameter float

26 May 10

arXiv:1004.1954 to appear PRD Study of D+ $\rightarrow K^-\pi^+\ell^+\nu$ CLEO-c 818 pb⁻¹

- Full CLEO-c $\psi(3770)$ dataset
 - Using hadronic D decay tags to fully reconstruct DD event
 - excellent resolution on ν from E, p conservation
- Detailed study including resonant K^{\ast} and non-resonant $K\pi$
 - All 5 kinematic variables used to study 4 helicity amplitudes completely free of model dependence
 - invariant masses: m(K π), q²=m²(ℓ v)
 - $\theta_V \& \theta_\ell$ helicity angles in K* & W rest frames
 - angle χ between decay planes
 - projective weighting technique
 - model independent measurement of form factors
 - pioneered by FOCUS: PLB 633, 183 (2006)
 - exploit the fine kinematic resolution possible at charm threshold

arXiv:1004.1954 to appear PRD CLEO-c 818 pb⁻¹

$BF(D^+ \rightarrow K^- \pi^+ \ell^+ \nu)$

- Six hadronic tag modes:
 - D⁻→K⁺π⁻π⁻, K⁺π⁻π⁻π⁰, K_Sπ⁻, K_Sπ⁻π⁰, K_Sπ⁻π⁻π⁺, K⁺K⁻π⁻
- Signal selected with cut on $|E_{\text{miss}} |\mathbf{p}_{\text{miss}}|| < 20 \text{MeV}$
- Both muons and electrons used (novel for CLEO-c)
 - $\circ~\mu\text{'s}$ give sensitivity to mass-suppressed form factors

		∠ _{int} (pb⁻¹)	B e (%)
	CLEO-c	818	5.52±0.07±0.13
Branching Fraction Resultsfull range of m(Kπ)	CLEO-c	56	5.56±0.27±0.23
	World Average	PDG 2008	5.49±0.31
			Β _μ (%)
	CLEO-c	818	5.27±0.07±0.14
	World Average	PDG 2008	5.40±0.40

- BF reduced by phase space factor $B_{\mu}/B_{e} = 0.9598 \pm 0.0193 \pm 0.0130$
- Most precise results, consistent with previous measurements

26 May 10

arXiv:1004.1954 to appear PRD CLEO-c 818 pb⁻¹

- $D^+ \rightarrow K^- \pi^+ \ell^+ \nu$ Form Factors
- Analyze 6 helicity FF
- Plot products vs q²:
 - $H_{+}^{2}(q^{2}), H_{-}^{2}(q^{2}), H_{0}^{2}(q^{2})$
 - \circ H_t²(q²), H_tH₀(q²), h₀H₀(q²)
- General agreement with spectroscopic poledominated model (curve)
 - \circ (a)-(c) dominant H₀ H₊ H₋
- Confirmed NR s-wave interference with K* (d)
 - no evidence for d- or f-wave
- (e),(f) suggest smaller Ht than expected from LQCD

Curves: pole-dominance model

points: data ($\Box e$, $\triangle \mu$, •combined)

Inclusive D and D_s SL decays

- Full CLEO-c open charm samples:
 - \circ 818 pb⁻¹ $\psi(3770)$ for $D^0\overline{D}{}^0$ and D+D-
 - \circ 602 pb⁻¹ \sqrt{s} =4.17 GeV for $D_s \, \overline{D} {}^*s$
- Use hadronic $D_{(s)}$ decay on one side as a tag
 - ∘ 3 cleanest tags: $D^0 \rightarrow K^-\pi^+$, $D^+ \rightarrow K^-\pi^+\pi^+$, $D_s^+ \rightarrow \varphi \pi^+$

- Accompanying electron spectrum gives inclusive S.L.
 branching fraction
 - \circ fit spectrum to extrapolate below p = 200 MeV/c

26 May 10

PRD 81 052007 (2010) CLEO-c 818+602 pb⁻¹ Electron Identification

- Tracks above 200 MeV/c and |cos $\theta|{<}0.8$
 - electrons identified with dE/dx, E/p and RICH
 - efficiency and fake rates measured using data
 - π from K_S $\rightarrow \pi \pi$;
 - K from reconstructed $D^+ \rightarrow K^- \pi^+ \pi^+$ decays
 - electrons from radiative Bhabha events embedded in data

High efficiency and low fake rates

26 May 10

Electron Spectra

- Unfold true electron spectrum from π , K & e spectra using PID efficiency matrix binned in momentum
 - Matrix accounts for smearing from finite momentum resolution
- Subtract backgrounds ($\gamma \rightarrow ee, \pi^0 \rightarrow \gamma ee$) using wrong sign candidates (9% correction for D⁰)

Extrapolation & Results

- Sum of exclusive modes used to extrapolate below electron ID threshold at 200 MeV
 - use BF and Form factors from other measurements
 - normalizations float within uncertainties
 - higher resonances added to complete inclusive BF
 - Use ISGW2 predictions & 100% uncertainties for unobserved modes

	<i>B</i> (eX) _{trunc} (%)	<i>B</i> (eX) (%)	<i>B</i> (Xe∨) (%)
D ⁰	5.958±0.084	6.460±0.091	6.46±0.09±0.11
D-	14.863±0.092	16.147±0.100	16.13±0.10±0.29
Ds	7.002±0.361	7.525±0.387	6.52±0.39±0.15

- B(eX) is extrapolated to all electron momentum
- B(Xev) is corrected for $D_{(s)} \rightarrow \tau v, \tau \rightarrow evv$ using measured BFs

26 May 10

Interpretation

- Compare decay rates under
 - Isospin D⁰↔D⁺

$$\frac{\Gamma(D^+ \to Xe^+ v)}{\Gamma(D^0 \to Xe^+ v)} = 0.985 \pm 0.015 \pm 0.024$$

- consistent with unity as expected
- SU(3) (D_s↔D⁺)

$$\frac{\Gamma(D_{\rm s}^+ \to Xe^+ v)}{\Gamma(D^0 \to Xe^+ v)} = 0.828 \pm 0.051 \pm 0.025$$

- Rate not expected to be equal under SU(3)
- May shed light on heavy quark SL decays in Heavy Quark expansion
- Weak Annihilation* contributions impact extraction of V_{ub} from inclusive
 - $b \rightarrow u \ell v$, estimated ~3% of the total rate concentrated at q^{2}_{max}
- Voloshin suggested $\frac{\Gamma(D_s^+ \to Xe^+v)}{\Gamma(D^0 \to Xe^+v)}$ can constrain B+ & B⁰ differences in the kinematic regions used to measure b $\to u\ell v$ and V_{ub}
- Expectations for WA in $D_{\rm s}$ are larger by ${\sim}(m_b/m_c)^3$
- CLEO-c measurement suggests the WA contribution to B decays is smaller than 3%, perhaps < 1%
 * "WA" diagram *
 - Recent analysis in Ligeti et al. arXiv:1003.1351
 Gambino& <u>Kamenik</u> arXiv:1004.0114
- 26 May 10 presentation tomorrow

Summary & Outlook for Charm SL

- Full CLEO-c statistics are partially analyzed
 - Form factors and BF in D→Kev, D→ π ev, D+ \rightarrow K⁻ π + ℓ +v
 - $D \rightarrow \pi ev$ gives a challenge for LQCD FF needed for V_{ub} from $B \rightarrow \pi ev$
 - V_{cs} and V_{cd} consistent with CKM unitarity (leading uncertainty from LQCD FF)
 - $\,\circ\,$ Inclusive D⁰, D⁺, D_s branching fraction & electron spectrum
 - provides some constraints on weak annihilation in $V_{\mbox{\scriptsize ub}}$ extraction
- Additional analysis underway at CLEO-c
 - ∘ D→ ρev , ηev , ωev with full statistics
 - $\circ \ D_s \ exclusive \ decays: \ \varphi ev, \eta ev, \eta' ev, K_s ev, K^{*0} ev, f_0 ev$
 - (not shown: 310 pb⁻¹ published PRD 80, 052007 (2009); 600 pb⁻¹ on tape)
- B factories have potential to add here
 - not shown: preliminary $D^+ \rightarrow K^-\pi^+ \ell v$ form factors from BaBar
- BES III is now running at $\psi(3770)$ with upgraded detector
 - $^{\circ}$ ∠_{int}>700 pb⁻¹, aiming for 1 fb⁻¹ by June 2010 ψ(3770)
 - See BES III status talk by H. Li: goal of ~4xCLEO-c statistics

26 May 10