

Annular silicon detector for (n,cp) and particle discrimination

Motivations

NTD strip detectors

Thickness: 300 μm Outer Diameter: 96 mm Central Hole: 46 mm No of Rings (Junction): 16 No of Elements (Junction): 64 No of Sectors (Ohmic): 16

Huge list, one can select the most important isotopes, for example Tungsten, used in the divertor of DEMO

Separazione p – α con PSA in rear side injection mode

- Soglia in energia 2 ÷ 3 MeV
- En < 15MeV..?

Nuclide	Abund.	Reaction	Comment
Cr-50	4.3%	$(n,\alpha)(n,p)$	No/little data
Cr-52	83.8%	(n,α)	One data set only
Cr-53	9.5%	(n,α)	No data
Cr-54	2.4%	(n,α)(n,p)	Lack of data below 14 MeV
Mn-55	100%	$(n,\alpha)(n,p)$	Discrepant data
Fe-56	91.7%	(n,α)	One data set only
Fe-57	2.1%	(n,α)(n,p)	Lack of data / No data for (n, α)
Zr-90	51%	(n,α)	No data
Zr-91	11%	(n,α)	No data
Zr-92	17%	(n,α)	Lack of data below 14 MeV
Nb-93	100%	(n,p)	No data
Mo-92	15%	(n,p)	No data
Mo-94	9.2%	(n,α)(n,p)	Lack of data / No data for (n,α)
Mo-95	16%	(n,α)	One data set only
Mo-96	17%	(n,α)	No data
Mo-97	9.6%	(n,α)	No data
Mo-98	24%	(n,p)	Lack of data below 14 MeV
Mo-100	9.6%	(n,p)	Lack of data below 14 MeV

Nuclide	Abund.	Reaction	Comment
Ta-181	100%	(n,α)(n,p)	Lack of data below 14 MeV
W-182	26%	(n,α)(n,p)	Lack of data / No data for (n,α)
W-183	14%	(n,α)(n,p)	Lack of data / No data for (n,α)
W-184	31%	$(n,\alpha)(n,p)$	Lack of data below 14 MeV
W-186	28%	$(n,\alpha)(n,p)$	Lack of data below 14 MeV

Almost all measurements to be done in EAR2, with improved detection systems (in order to reach 14 MeV).

Simone Amaducci – Italian Meeting - 26 March 2021

Test of PD with silicon detectors

What we are dealing with:

- 1. Different detectors annular-stripped and single pad
- 2. New DAQ with high sampling rate (1GS/s)
- 3. New routine to analyze the waveforms
- 4. Data analysis with root (as usual)
- 5.MC simulations for calibration

Simone Amaducci – Italian Meeting - 26 March 2021

Quantities of interest

A dedicated Signal Analyzer is being developed at LNS, with the support of Gianfranco Vecchio.

Simone Amaducci – Italian Meeting - 26 March 2021

Quantities of interest

A dedicated Signal Analyzer is being developed at LNS, with the support of Gianfranco Vecchio.

Simone Amaducci – Italian Meeting - 26 March 2021

Test with nTD single pad and LiF

First test made with a single pad nTD detector $3x3cm^2$ coupled with a thin LiF sample (1.9um) on the rear side.

The detector was been placed inside a polyethylene box and exposed to the intense neutron source available at LNS.

Simone Amaducci – Italian Meeting - 26 March 2021

Test with nTD single pad and LiF

As expected, a change in the slope is observed when the bias voltage is close to the depletion value.

Simone Amaducci – Italian Meeting - 26 March 2021

Max Slope vs Amplitude

Simone Amaducci – Italian Meeting - 26 March 2021

Test with annular detector

Sectors 7-8-9 tested at LNS with a dedicated configuration:

- 1. Vacuum chamber
- 2. Three-peak alpha source
- 3. Particles injected in the rear side (16sectors)
- 4. Calibrated aluminum foils to degrade the alpha energy
- 5. Acquiring data for one or two sectors at the same time (DAQ has only 2 channels)

Simone Amaducci – Italian Meeting - 26 March 2021

Integral sector8

Simone Amaducci – Italian Meeting - 26 March 2021

Max Slope vs Amplitude

Simone Amaducci – Italian Meeting - 26 March 2021

Rise Time vs Amplitude

Simone Amaducci – Italian Meeting - 26 March 2021

Activities for future

Really a lot of work!

- 1. Test other strips and sectors of the annular detector
- 2. Test **annular with a LiF** sample and the neutron source at LNS
- 3. Improve the LNS Signal Analyzer and optimize the parameters used for the analysis
- 4. Systematic study to find the ideal working conditions (in particular concerning the V_{bias})

5. Quantify the resolving power and the energy threshold

6. Test the technique **at CERN with n_TOF DAQ** (and implement some the required features in the n_TOF PSA routine)

7. Optimize the read-out

- 8. Test with accelerators to discriminate light particles
- 9. Study the annular efficiency, inter-strip events, etc...

Simone Amaducci – Italian Meeting - 26 March 2021

Interaction between sectors

Simone Amaducci – Italian Meeting - 26 March 2021

Backup - Calibration

A (fast) MC simulation has been made to calibrate the detectors, a good agreement has been obtained (top and bottom right panels).

0.1

Amplitude sector8

Simone Amaducci – Italian Meeting - 26 March 2021

