CYGNO simulations update

Giulia D'Imperio

CYGNO simulation meeting 29/03/21

AmBe simulations

AmBe source

- AmBe source is made of $^{241}AmO_2$ and ^{9}Be
- ²⁴¹Am decay:
 - \circ Radioactive ²⁴¹Am has a half-life of 432.2 years and decays via α emission (five different energies averaging 5 MeV) to ²³⁷Np.
 - The dominant energy of the resulting background gamma-rays from the decay of the intermediate excited states in ²³⁷Np is 59.5 keV.
 - \circ ~ Fast neutrons are produced when the decay α particles interact with $^9\text{Be}.$

Ref: <u>https://www.sciencedirect.com/science/article/abs/pii/S0969804307001200</u>

AmBe simulation in LIME

- LIME simulation code https://github.com/CYGNUS-RD/CYGN0-MC/tree/lime
- Added macros in the macro directory to simulate separately:
 - neutrons with spectrum from figure in previous slide
 - 4.438 MeV gammas
 - ²⁴¹Am decay (mostly gammas at 59.5 keV)
- Position of the source above the LIME box + 10x10x10 cm³ Pb shield

emission n/sec	capsule type	code
2·2×103	X.2	AMN.11
6.6×103	X.2	AMN.13
2.2×104	X.2	AMN.15
6.6×104	X.2	AMN.16
6.6×104	X.21	AMN.168
2·2×10 ⁵	X.2	AMN.17
2.2×105	X.20	AMN.170
6.6×105	X.2	AMN.18
1.1×10 ⁶	X.3	AMN.19
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	emission n/sec capsule type 2·2×10 ³ X.2 6·6×10 ³ X.2 2·2×10 ⁴ X.2 6·6×10 ⁴ X.2 6·6×10 ⁴ X.2 6·6×10 ⁴ X.2 6·6×10 ⁵ X.2 2·2×10 ⁵ X.2 2·2×10 ⁵ X.2 1·1×10 ⁶ X.3

Americium-241/Beryllium

Basic comparison with AmBe data

- 2555 entries for MC with LIME
 - → ~50 sec equivalent data taking
- 407 for experimental data in LEMON
 → ~60 sec live-time
- ratio between the total entries = 0.16
 → matches with factor obtained considering the volumes LEMON (7), LIME (50) and equivalent time ratio = 0.17
- distribution in data shows no events at high energy and more events at low energy
 → not surprising: QF not included in MC, maybe saturation not fully corrected, filters in the reco for high density pixels, ...

Feasibility of Migdal study with LIME (LEMON)

How the Migdal effect can be measured

	target gas	Ar 1 atm $(30 \text{ cm})^3$	Xe 8 atm $(30 \text{ cm})^3$
number of nuclei		$7.26 imes 10^{23}$	5.81×10^{24}
cross section for 565 keV neutron		$0.65 \mathrm{\ barn}$	$6.0 \mathrm{\ barn}$
	Migdal branching	$7.2 imes 10^{-5}$	$4.6 imes 10^{-6}$
	fluorescence yield (K shell)	0.14	0.89
	scaling factor $(q_{\rm e}^{\rm max}/511{\rm eV})^2$	2.92	0.280
1000 n/	s/cm ² event rate	603 events/day	975 events/day

Table 1Typical values of parameters for estimating the Migdal effect. The branchingratios for (n,l) = 1s and $q_e = 511 \, \mathrm{eV}$ are shown.

https://arxiv.org/pdf/2009.05939.pdf

Signal: use the (1s, K shell) x-ray de-excitation line @ 3 keV as an event tag. The signature is a NR with an ER separated by O(cm)

- Source activity: 2.2 10⁵ neutrons/sec
 - LIME: 50 NR/sec
 - LEMON: 7 NR/sec
- To study Migdal effect we need at least O(100) interesting events
 - → considering the BR of Migdal and probability of X-ray emission, we need ~10⁷ NR
 - LIME: 200000 sec livetime (~3 days)
 - LEMON: 1400000 sec livetime ([~]17 days)
- Dead time could be a factor 2-3
 - → few weeks of data taking

Comparison of the rates (preliminary)

	initial rate/flux	rate in LIME [s ⁻¹]	rate in LEMON [s ⁻¹]
neutrons (AmBe*)	2.2 10⁵ s ⁻¹	50 (NR) + 42 (ER)	7 (NR) + 5 (ER)
gammas 4.4 MeV (AmBe*)	1.3 10⁵ s⁻¹	3 10⁴ (ER)	4 10 ³ (ER)
cosmic rays	0.019 cm ⁻² s ⁻¹	20 (ER)	8 (ER)
external gammas	1 cm ⁻² s ⁻¹	100 (ER)	20 (ER)
external neutrons	10 ⁻² cm ⁻² s ⁻¹	~0.01 (NR)	5 10⁴ (NR)
internal backgrounds	-	4 10 ⁻³ (ER) + 10 ⁻⁵ (NR)	5 10⁻⁴ (ER) + 10⁻⁶ (NR)

* Including Pb block of 10x10x10 cm³ between the source and the detector. From preliminary simulations the rate of events from gammas at 4.4. MeV are increased of factor ~15 putting the lead, while neutron events are decreased of a factor 3.

First comparison with Ar:CF4 mixture

- 10⁷ generated neutrons
- 2555 NR in He:CF4 mixture
- 2585 NR in Ar:CF4 mixture
- The spectrum for Ar:CF4 has more recoils at low energy

Next steps

- Optimize the setup in order to maximize the signal (AmBe neutrons) to noise (all the rest) ratio: ex. change source position, remove lead,...?
- Other possible sources? (AmBe with higher activity, neutron gun...?)
- Double-check the numbers from simulations and compare with data (gammas of 4.4 MeV from AmBe seem too many according to simulations)
- New student working with Davide and Gianluca will simulate with Garfield the detector parameters with ArCF4 mixture
- Other suggestions?

Tests of new reconstruction branch "lime2021"*

*still under development, version not stable

IDAO samples

- ER simulated with Geant4
- He NR simulated with SRIM
- 1000 events starting from the center
- Energies 1, 3, 6, 10, 30, 60 keV
- Initial direction (1,0,0)

More results of the analysis with old reconstruction (lime2020) in this presentation https://docs.google.com/presentation/d/12B H4pDyzcdemhw7tCJse-itwJ3qgU6zb7I3OeT AM2M/edit?usp=sharing

Comparison lime2020 vs lime2021 efficiency ER

 Efficiency is similar and slightly better for energies >3 keV

Comparison lime2020 vs lime2021 energy bias

- Containment of the SC seems a little better for energies up to 60 keV
- Need to test at higher energy (now lngs queues are busy for Emanuele's tests)

Next steps

- Obtain a plot of rejection ER vs energy (similar to the one top right)
- Define a selection to separate ER from NR as a function of energy
- Study discriminant variables: ex. density (sc_integral/sc_nhits) as a function of energy in

- preliminary, old reco
- density of 6 keV ER ~13
 compatible with LIME
 AmBe data analysis
- density of NR increasing with energy → not obvious comparison with AmBe because NR in data have a continuum spectrum

