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Quantum quench protocol
1 Prepare a system at t < 0 in the GS |Ψ0〉 of a Hamiltonian H({λ}).

Example (Ising spin chain):

H({λ}) = −∑n

[
σx

nσ
x
n+1 + hzσ

z
n + hxσ

x
n

]
, {σαn , σβm} = 2δn,mδα,β

2 At time t = 0, suddently modify the Hamiltonian H({λ})→ H({λ′}).
Example:

hx → hx + δhx ; longitudinal field quench

3 Study the unitary time evolution for positive times

|Ψ(t)〉 = e−iH({λ′})t |Ψ0〉

Try to infer large time behaviour of local observables (Ex. σx
n , σ

z
n, ...)

and entanglement entropies (relaxation, thermalization, etc...)
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Entanglement evolution in 1+1 d (Definitions)

Consider the spacial bipartition of the Hilbert space: A⊗ B

t

x

|Ψ(t)〉 =
∑

α,β Cαβ(t)|α〉A ⊗ |β〉B

• • • • • • • •
A

From the rectangular matrix C (t) we obtain the reduced density
matrix on the right

ρA(t) := TrB |Ψ(t)〉〈Ψ(t)|

From the eigenvalues of ρA, one builds usual entanglement measures

∆SA(t) := SA(t)− SA(0); SA(t) = −TrA[ρA(t) log ρA(t)]
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Entanglement and thermalization: basics
How to construct a statistical ensemble for local correlations inside
A after the system relaxes?

x• • • • • • • •
|A| = `

ρstat = limt→∞ TrB |Ψ(t)〉〈Ψ(t)|

Stationary entropy is the entanglement entropy!

Suppose to quench hz in the Ising spin chain, keeping hx = 0

|Ψ(t)〉 = e it
∑

n

−H︷ ︸︸ ︷
σx

nσ
x
n + (hz + δhz )σz

n |Ψ0〉︸︷︷︸
GS for hz

The model maps to free Majorana fermions of mass m ∝ (1− hz )

H =
∑

k ε(k)b†(k)b(k), {b†(k), b(k ′)} = δkk ′
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Entanglement and thermalization: basics
For a transverse field quench the stationary density matrix is

ρstat = 1
Z e
−∑

k β(k)b
†(k)b(k)

The coefficients β’s are fixed by the initial state

Tr[ρstatb
†(k)b(k)] = 〈Ψ0|b†(k)b(k)|Ψ0〉 ≡ α(k)

Entanglement entropy is O(1) at t = 0 and O(`) at t =∞.
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SA(∞) = −Tr[ρstat log(ρstat)]

S A
∝ t

[Calabrese, Fagotti and Essler (2012)]

Entanglement grows fast ⇔ Local observables relax to equilibrium
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Left-Right entanglement
Simpler version of the problem: A=Right (R) and B=Left (L)

t

x• • • • • • • •

A = RightB = Left

At t = 0, the system is the ground state of H({λ}), |Ψ0〉

How does entanglement propagate from Left to Right?

∆SR(t) = SR(t)− SR(0); SR(t) = −TrR [ρR(t) log ρR(t)]

According to the heuristics, it should grow linearly in time forever

∆SR(t)
t�1
= Γt

This setup can be studied analytically [O. Castro-Alvaredo, M.
Lencses, I. Szczesny and JV; JHEP 2019, PRL 2020]
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Entanglement evolution in 1+1 d: Twist Fields

At real time t = 0, the element

ρ
{σ,σ′}
R (t = 0)

is a partition function on the
complex plane with a slit

{σ′}

{σ}

e(1−n)×Reny Entropy is a partition function on a n-sheeted Riemann
surface. This can be calculated using the twist-field

TrRρ
n
R(t = 0) ∝ ⊗n〈Ψ0|T (0, 0)|Ψ0〉⊗n

Time evolving in real time with H({λ′}) for t > 0 on each replica

TrRρ
n
R(t) ∝ ⊗n〈Ψ0|e it

∑n
r=1 H(r)({λ′})T (0, 0)e−it

∑n
r=1 H(r)({λ′})|Ψ0〉⊗n
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Example: Ising spin chain close to criticality
Consider again the Ising spin chain

H({λ}) = −∑n

[
σx

nσ
x
n+1 + hzσ

z
n + hxσ

x
n

]

Close to the critical point λx = λz = 0, fluctuations are described by
the effective action

Aeff =
∫
dtdx ψ̄(iγµ∂µ −m)ψ − λx

∫
dtdx σ ; m ∝ (1− hz ); hx ∝ λx

Problem: How entanglement grows after quenching the couplings?

•

•

•

Free massive fermionsE8 field theory

QCP m ∝ (1− hz )

λx ∝ hx
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E8 symmetry and Ising chain in a longitudinal field
Mass spectrum conjectured long ago [A. B. Zamolodchikov 1989]

It consists of 8 stable particles: m1 < m2 < m3 · · · < m8.

Measured experimentally from FT of the two-point function of σx

Coldea et al. (2011); Zhang et al. (2020); Zou et al. (2020).



E8 symmetry and Ising chain in a longitudinal field
Mass spectrum conjectured long ago [A. B. Zamolodchikov 1989]

It consists of 8 stable particles: m1 < m2 < m3 · · · < m8.

Measured experimentally from FT of the two-point function of σx

Coldea et al. (2011); Zhang et al. (2020); Zou et al. (2020).



Results for the Ising spin chain close to criticality

•

•

•
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λx ∝ hx

δm/m = −1/6

Perturbative representation of the initial state (δλx/λx � 1 or
δm/m� 1) & spectral decomposition of the 1pt function

Numerical tests through MPS and exact lattice results
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Entanglement spectroscopy along the E8 line
From the FT transform of the entanglement entropy we can extract
the masses of E8 field theory
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GS for hx︷︸︸︷
|Ψ0〉
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Will entanglement eventually grow?
Let me recap/conclude

H({λ}) = −∑n

[
σx

nσ
x
n+1 + hzσ

z
n + hxσ

x
n

]
QFT results obtained for δhx/hx � 1 suggest that entanglement
growth is strongly suppressed after a quench of the longitudinal field

Notice instead that for a quench of the transverse field δhz/hz

entanglement grows linearly

Can we make some non-perturbative statement?
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Conclusions and perspectives

Take Home Message: Entanglement dynamics is a powerful
diagnostic to understand subsystem thermalization at large times

Entanglement grows fast in time (∝ t) ⇒ extensive Shannon
entropies (∝ L) for t � L. Some systems fail to relax.

TODO[*]: Application of the formalism to other 1d chains: Ising in
imaginary longitudinal field, XYZ scaling limit of Sine-Gordon

TODO[**]: A physical lattice picture that explains absence of
entanglement growth for small longitudinal field in Ising (see Milsted,
Liu, Preskill and Vidal 2012.07243)

TODO[***]: Calculate second order contributions in δλ/λ to the
Rényi entropies by using QFT

TODO[***]: Role of measurements on entanglement evolution, can
we formulate them in a QFT setting?


