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Quantum quench protocol

© Prepare a system at t < 0 in the GS |Wg) of a Hamiltonian H({\}).
Example (Ising spin chain):

H{AY) = = X, [o507 0 + h:0% + hxoy] . {05, 0m} = 200,mdas

@ At time t = 0, suddently modify the Hamiltonian H({\}) — H({)\'}).
Example:

hy — hx + dp,; longitudinal field quench



Quantum quench protocol

© Prepare a system at t < 0 in the GS |Wg) of a Hamiltonian H({\}).
Example (Ising spin chain):

H{AY) = = X, [o507 0 + h:0% + hxoy] . {05, 0m} = 200,mdas

@ At time t = 0, suddently modify the Hamiltonian H({\}) — H({)\'}).

Example:

hy — hx + dp,; longitudinal field quench

© Study the unitary time evolution for positive times
W(t)) = e~ HIND|wg)

@ Try to infer large time behaviour of local observables (Ex. o%, oZ, ...
and entanglement entropies (relaxation, thermalization, etc...)

)



Entanglement evolution in 141 d (Definitions)

@ Consider the spacial bipartition of the Hilbert space: A® B
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W(t)) = 208 Cap(t)la)a ® [B)B
A
Ty S e SO R S T et 2t
i R N S e R e




Entanglement evolution in 141 d (Definitions)

@ Consider the spacial bipartition of the Hilbert space: A® B
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@ From the rectangular matrix C(t) we obtain the reduced density
matrix on the right

pa(t) == Trg|W(t))(W(1)|

@ From the eigenvalues of pa, one builds usual entanglement measures

ASA(t) = SA(t) = SA(O); SA(t) = —TrA[pA(t) log pA(t)]



Entanglement and thermalization: basics
@ How to construct a statistical ensemble for local correlations inside
A after the system relaxes?

| | Pstat = lim¢ 500 T"B’\U(t)><w(t)|
Al =/
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Entanglement and thermalization: basics
@ How to construct a statistical ensemble for local correlations inside
A after the system relaxes?

| | Pstat = lim¢ 500 TrB]\U(t)><\U(t)|
Al =/
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@ Stationary entropy is the entanglement entropy!
@ Suppose to quench h; in the Ising spin chain, keeping h, =0

—H

W(t)) = et >, onon + (hy + dp,)of Wo)
~—
GS for h,

@ The model maps to free Majorana fermions of mass m (1 — h;)

H = Y2, (k)BT (k)b(K), {b(k), b(K')} = die



Entanglement and thermalization: basics
@ For a transverse field quench the stationary density matrix is

oy = e o G

@ The coefficients §’s are fixed by the initial state

Tr[pseac b (k) b(k)] = (Wo|b' (k)b(k)|Wo) = a(k)



Entanglement and thermalization: basics
@ For a transverse field quench the stationary density matrix is

Pstat =

1 e~ Xk BB (K)5(K)

@ The coefficients §’s are fixed by the initial state

Tr[pseac b (k) b(k)] = (Wo|b' (k)b(k)|Wo) = a(k)

@ Entanglement entropy is O(1) at t = 0 and O({) at t = oo.
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| Sa(00) = —Tr[pstat log(pstat)]
| [Calabrese, Fagotti and Essler (2012)]

o Entanglement gro&vs fast < Local observables relax to equilibrium



Left-Right entanglement
@ Simpler version of the problem: A=Right (R) and B=Left (L)

t

B = Left A = Right

@ At t = 0, the system is the ground state of H({\}), |[Wo)



Left-Right entanglement
@ Simpler version of the problem: A=Right (R) and B=Left (L)

t

B — Left A = Right

@ At t = 0, the system is the ground state of H({\}), |Wo)
@ How does entanglement propagate from Left to Right?

ASg(t) = Sr(t) — Sr(0); Sr(t) = —Trrlpr(t)log pr(t)]

@ According to the heuristics, it should grow linearly in time forever

ASg(t) Z' Tt



Left-Right entanglement
@ Simpler version of the problem: A=Right (R) and B=Left (L)

t

B — Left A = Right

@ At t = 0, the system is the ground state of H({\}), |Wo)
@ How does entanglement propagate from Left to Right?

ASg(t) = Sr(t) — Sr(0); Sr(t) = —Trrlpr(t)log pr(t)]

@ According to the heuristics, it should grow linearly in time forever

ASg(t) Z' Tt

@ This setup can be studied analytically [O. Castro-Alvaredo, M.
Lencses, |. Szczesny and JV; JHEP 2019, PRL 2020]



Entanglement evolution in 141 d: Twist Fields

@ At real time t = 0, the element

; {0}
Pk 7t =0)

{0}

is a partition function on the
complex plane with a slit



Entanglement evolution in 141 d: Twist Fields

@ At real time t = 0, the element

{o'}
{0}

Pk (E=0)

is a partition function on the
complex plane with a slit

o e(l—n)xReny Entropy i 5 partition function on a n-sheeted Riemann
surface. This can be calculated using the twist-field

Trrph(t = 0) o< @™ (Wo|T(0,0)[Wo)®"
e Time evolving in real time with H({\'}) for t > 0 on each replica

Trrph(t) o " (Wo|eit Tict HOUVDT (0, 0)e~t it HOUND yrg)@n



Example: Ising spin chain close to criticality
@ Consider again the Ising spin chain

HAAY) = =3, [0%0%1 + hzoZ + hyeo]



Example: Ising spin chain close to criticality
@ Consider again the Ising spin chain

HAAY) = =3, [0%0%1 + hzoZ + hyeo]

@ Close to the critical point Ax = A, = 0, fluctuations are described by
the effective action

Aeir = [ dtdx (i, — m)h — A [ dtdx o ; moc (1 — hy); hx o< Ay

@ Problem: How entanglement grows after quenching the couplings?
Ax X hy

Eg field theory‘ | Free massive fermions

QCP m (1— hy)



Eg symmetry and Ising chain in a longitudinal field
@ Mass spectrum conjectured long ago [A. B. Zamolodchikov 1989]

@ It consists of 8 stable particles: m; < my < msz--- < mg.

@ Measured experimentally from FT of the two-point function of o*



Eg symmetry and Ising chain in a longitudinal field
@ Mass spectrum conjectured long ago [A. B. Zamolodchikov 1989]

@ It consists of 8 stable particles: m; < my < msz--- < mg.
@ Measured experimentally from FT of the two-point function of o*
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@ Coldea et al. (2011); Zhang et al. (2020); Zou et al. (2020).



Results for the Ising spin chain close to criticality

Ax X hy

QCP4 —>—— > mox (1—hy)



Results for the Ising spin chain close to criticality
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Results for the Ising spin chain close to criticality

She/he = —0.04 0hz /he = 0.05
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Results for the Ising spin chain close to criticality

Sha/he = —0.04 6ha/hs = 0.05
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@ Perturbative representation of the initial state (dA\/Ax < 1 or
dm/m < 1) & spectral decomposition of the 1pt function

@ Numerical tests through MPS and exact lattice results



Entanglement spectroscopy along the Eg line
@ From the FT transform of the entanglement entropy we can extract

the masses of Eg field theory



Entanglement spectroscopy along the Eg line
@ From the FT transform of the entanglement entropy we can extract

the masses of Eg field theory
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@ These can be compared with the LR eptanglement entropy obtained
numerically (MPS) from the state:
GS for hy
|W(t)) = et 2nonontont(hetin)on @



Will entanglement eventually grow?
@ Let me recap/conclude

H({AY) = =32, [o5071 + hz07 + hyo]

@ QFT results obtained for dp, /h, < 1 suggest that entanglement
growth is strongly suppressed after a quench of the longitudinal field

@ Notice instead that for a quench of the transverse field dp,/h,
entanglement grows linearly

@ Can we make some non-perturbative statement?



Will entanglement eventually grow?
@ Let me recap/conclude

H({AY) = =32, [o5071 + hz07 + hyo]

@ QFT results obtained for ¢, /h, < 1 suggest that entanglement
growth is strongly suppressed after a quench of the longitudinal field

@ Notice instead that for a quench of the transverse field dp,/h,
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Conclusions and perspectives

o Take Home Message: Entanglement dynamics is a powerful
diagnostic to understand subsystem thermalization at large times

e Entanglement grows fast in time (o t) = extensive Shannon
entropies (o< L) for t > L. Some systems fail to relax.

e TODO[*]: Application of the formalism to other 1d chains: Ising in
imaginary longitudinal field, XYZ scaling limit of Sine-Gordon

o TODO[**]: A physical lattice picture that explains absence of
entanglement growth for small longitudinal field in Ising (see Milsted,
Liu, Preskill and Vidal 2012.07243)

o TODO[***]: Calculate second order contributions in d)/\ to the
Rényi entropies by using QFT

o TODO[***]: Role of measurements on entanglement evolution, can
we formulate them in a QFT setting?



