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The X17, stating the obvious first

• We look for a boson with mass:
4He 2104.10075 

8Be 1504.01527

• The small mass implies 
à No need for large 𝑠 to produce a X17, makes beam dump experiments competitive. 

In particular, in “worst case” of 𝑒! driven processes on atomic electron

à Accessible in decay of low mass particles e.g. 𝜋", 𝜇 with large rates from small SM 
decay width

à But also from excited flavoured mesons

Positrons below the GeV are still energetic 
enough to produce a X17 in 𝑒#𝑒! annihilation

𝑀!∗ −𝑀! ≃ 140 MeV

See e.g. 2101.01865
𝑀"∗ −𝑀" ≃ 45 MeV

Etc…

𝑠 = 2𝑚#𝐸$ ∼ 30 MeV ×
𝐸$

1 GeV



Fixing notations: explicit Lagrangians for X17
• An axion-like particle (ALP) 𝑎, interacting via ̅𝑓𝛾4𝛾5𝑓

• A light vector 𝑉4, potentially with both vector and axial couplings

Most of the 𝑒!/𝑒#-driven production rates shown in the rest of the talk satisfy 
approximately:

𝑒!/𝑒#-driven production rates are pretty agnostic
concerning the X17 nature/couplings 

𝑔!" corresponds to 
#!"
"!

in Daniele 

Alves’s talk

𝑔$" corresponds to 
𝑒𝜀" in Jonathan 
Feng’s and Tim Tait’s 
talks



The X17: the couplings

• It has to decay (mostly) visibly into 𝑒6𝑒7
à For ATOMKI result, coupling with electron constrained only by a lower limit to ensure 

decay length smaller than ~cm (we will discuss it in detail in this talk)
à Can have an invisible BR to e.g. a new dark sector particles but leads to even larger 

coupling to quarks
à Strong constraints on neutrinos interactions from 𝜈'𝑒#scattering experiments

• Need a large couplings to quarks, but the actual couplings target depends 
on the X17 nature
à As a reference for the vector case

See e.g. 1608.03591, assumed BRee at 1.

Huge couplings ! Protophobia 
needed to escape NA48

𝑔() + 2 𝑔(* ∼ [0.6 ⋅ 10#+, 3 ⋅ 10#+]

2𝑔() + 𝑔(* ≲ 0.4 ⋅ 10#+



X17: widths and productions

• Altogether we have the following situation

• Combined, the above requirements imply that the X17 must have a tiny 
width, mostly driven by the 𝑒6𝑒7 decay

Γ8 ∼
9!"
#

:;<
𝑀= ∼ 0.5 eV × 9!"

>.>>:

; More challenging 
to produce it on 
resonance

q

q

X17

e+

e−

Nuclear processes

Mesons decays

• 𝑒!/𝑒# beam dump 
and 𝑒!/𝑒# collider

• 𝑒(∗) → 𝑒 𝑋 emission

Vector case

q

q

X17

e+

e−



X17 production strategies at accelerators: 
an overview



Accelerator facilities (currently) available

• 𝑒6𝑒7 colliders ( BaBaR, Belle-II …)
§ Good production rates, large luminosity, but also background 

control and the small 𝑝/ for the 𝑒!𝑒# pair à Still interesting 
avenue for X17 (displaced vertices?)

• 𝑒6𝑒7 beam dumps: typically, 𝑒6 or 𝑒7 machine (NA64, 
PADME, MAGIX, etc…) 
§ Large production rates, can search for displaced vertices or 

reconstruct the 𝑒!𝑒# pair à particularly suitable

• Intensity beam dumps: typically, 𝑝 machines (beam 
neutrinos exp, SHiP). 
§ Large backgrounds + protophobia of X17 + far away detectors à

Challenging for X17

• Rare meson/lepton decays à Promising, but with model-dependence

Missing energy



Rare decays searches 
• Rare decays probes are both extremely effective in probing X17, often at 

the price of a large model dependence 

• Mesons decay probes (example from mostly last year)

o 𝜋" → 𝛾𝑉01, for vector states:  NA48 bounds implies proto-phobic

o 𝐽/Ψ decays, charm couplings only

o𝐵∗ → 𝐵 𝑉01, 𝐷∗ → 𝐷 𝑉01 for vector states

o 𝜋"→ 𝑎01 → 𝑒!𝑒#, 𝐾 → 𝜋 𝜋 𝑎01, 𝐾 → 𝜇𝜈 𝑎01
o 𝜋"→ 𝑎01 𝑎01 𝑎01 and other multi-leptons final states

e.g Alves et al. 1710.03763, 2009.05578

hep-ex/0610072

Ban et al. 2012.04190

Castro and Quintero 2101.01865

Feng et al. 
(1604.07411,1608.03591) 
2006.01151
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• If flavour-violation, many more available channels both in lepton decays 
and in “standard” flavoured meson decay.
• Also radiative emission from 𝜇 decay (cf Ann-Kathrin’s talk) 

Hostert and Pospelov 2012.02142
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X17 production in 𝑒!/𝑒" machines

Associated/mono-𝛾

Bremsstrahlung

Resonant

etc…

For an ALP/axion X17 𝜎%&' ∼ 𝜋𝑔!&( 𝑚&𝛿(𝐸) − 𝐸%&')

à Electron-only machine 
mostly rely on 
Bremsstrahlung process

• Lepton-induced production is currently focused on Bremsstrahlung

à Positron machine have 
more channels (annihilation 
on beam target’s electrons)

For an ALP/axion X17



Beam energy dependence
• Bremsstrahlung CS depends only 

feebly on the actual 𝑒6/𝑒7 energy
• Intensity, signal efficiencies, and control 

of the background are the important 
parameters!

• For resonant production one needs 
to meet the resonance condition

• For masses in the tens of MeV, low 
energies are required … 

Significant reduction 
only near beam energy

• For associated production: the smaller the better since  𝜎 ∝ 9:; <
< , as long as 𝐸 ≫ 𝐸='<>01

Ebeam= 11 GeV
Ebeam= 0.5 GeV
Ebeam= 0.15 GeV

Eref = 150GeV
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LD, Prelim
inary

𝐸='<>01 ≃ 280 MeV
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.. but energy matters for decay lengths!

• Bremsstrahlung extracts most of the energy of the beam 

• By contrast, X17 from resonant production have relatively low energy

Make displaced 
signatures viable 
for higher energy 
experiments

• However, resonant production implies that the decay production satisfy 
precisely both 𝐸>01res ≃ 280 MeV and 𝑚'' ≃ 𝑚>01

𝛾>01ℓ>01 ∼ 3 cm
𝐸>01

100 GeV
17 Me𝑉
𝑚>01

3 ⋅ 10#@

𝑔>'

A

𝛾>01ℓ>01 ∼ 3 cm
𝐸>01

100 GeV
17 Me𝑉
𝑚>01

0.5 GeV#0

𝑔>'

A

(Vector)

(ALP)

𝐸>01res =
𝑚>01
A

2 𝑚'
≃ 280 MeV

Displaced signatures viable 
only for the lowest allowed 
couplings

𝛾>01res ≃ 15



The case of resonant production
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Going resonant …

Resonant process
àCross-section x100-1000 

times larger
àFixed positron energy 

required

Bremsstrahlung 
process
àCross-section 

scales as Z!

àALP/DP carries 
away most of the 
beam energy: 
sensitivity up to
𝑚" ∼ E##

• What are the trade-offs of going to resonant production ?
à First, we need to find positrons somewhere (use a positron beam, rely on 
secondary positron production in a thick target, etc…). Typically, this implies a certain 
loss in energy + beam intensity

However the gain in cross-section is enormous!

𝜎%&' ∼ 𝜋𝑔!&( 𝑚&𝛿(𝐸) − 𝐸%&')



• Vary the beam energy (+ radiative return)
à X17 has a narrow mass range, less than a MeV, only the narrow range [270 

MeV, 290 MeV] needs to be probed
à ”Scanning” procedure is required (possible only with the DAΦNE beam at 
LNF currently?)

• Use energy loss and secondary 𝑒6 production in the target to “scan” 
naturally various positron energies
à Requires a “not-too-thin” target to allow some evolution of the beam

How to get to the exact energy ?

• Study models with large invisible width Γ=@AB à not possible for the 
X17

See e.g. 1802.04756

See e.g. 1802.03794, 2105.04540



The thick target approach – positron beam
• Effective to probe a large 

range of masses
• Since the X17 decay 

visibly + no large boost à
Relatively thin target 
required
• If the primary beam 

energy energy is 
significantly larger than 
𝐸8:C,EFG à marginal 
production gain of having 
a primary 𝑒6 beam.

Resonant production 
from primary 𝑒)

Resonant production 
from “secondary” 𝑒)

𝐸"#$% = 11 GeV

LD, Prelim
inary



Secondary positron production
• A secondary positron population build up

From Marsicano et al. 1807.05884.

à Background from the residual shower likely 
to swamp the signal  

à X17 resonant production occurs at any point 
in the target, including at the end

the shower “convert energy to statistics”
𝑁'$
>01 ∼ B%&%/A

AD"E'(
𝑁''FGF

LD, Prelim
inary



Resonant production: thin target
• In a thin target environment, the positron beam must be very near 

the resonant energy of ∼ 270 − 290 MeV
• The windows is directly related to the uncertainty in the X17 mass
à Typical beam spread of 1 MeV or below imply that at least ten different 
energies should be probed

• Extremely large production rates are expected when near the resonance

𝑁( = 𝑁H:H
𝑁IJ𝜌KF
𝐴KF

×𝑍KF×𝑓 𝐸='< × \𝜎×𝐿HI= ≃ 10 𝑔('A 𝑁H:H

7 ⋅ 10(,𝑐𝑚-,
~ R* (./0 ∼ 400 𝐺𝑒𝑉-*

(Gaussian distribution for the 
beam energy)

~ 3000 𝑔$&( 𝐺𝑒𝑉-* ~ 0.03 𝑐𝑚

• When not on the resonance, the signal will disappear -> bump search



Scanning strategy
• Several runs depending on 

the beam spread
à more precision on X17 

mass means less beam time
àSmaller spread implies 

lower background
àCurrently only LNF’s 

accelerator complex can 
provide a positron beam 
and vary its energy

• Include radiative return 
effects with use of NLO 
𝑒!𝑒# → 𝛾 𝑋 , with soft 
photon emission

LD, Prelim
inary



Conclusion



Conclusion 

• X17’s ”light” mass means that there are many complementary ways 
of producing the X17 
àcan provide an independent cross-check to the nuclear decay results

• Electron/positron-based facilities provide a relatively model-
independent way of testing the existence of this particle

• Resonant production mechanism can play an important role in 
producing the X17, using of the fact that its possible mass is precisely 
known.



Backup



X17, some technical details

• Mesons decays estimations 
• No automatic tool available (new light states: not possible to apply standard 

WET-based tools)
à Analytical calculation required. BR usually estimated by standard 

techniques (𝜒PT, Vector Meson Dominance, …)
• EM-derived processes

• For collider experiments: standard MC tools can be used (MG5_aMC@NLO, 
CalcHEP, etc…)

• For beam dump à must include the track-lengths information, nucleus 
form factors…

Mesons: 𝑓&!, 𝑓', 𝑓(, …

EM processes: 𝑇#±, 𝑇)

𝑒±𝑍, 𝑝𝑍

𝑒#𝑒$, 𝑝𝑝

Flavoured mesons decay
𝐵 → 𝐾 𝑋,𝐾 → 𝜋𝑋,𝐾 → 𝑖𝑛𝑣 or 𝐷,𝐵, 𝐽/Ψ → ℓ𝑁 etc …

Limit on rare BR, 
𝐵 → 𝐾,𝐾 → 𝜋,
𝜋 → 𝑖𝑛𝑣., etc…

Limits on mono-
photon search 
@ BaBar/NA64/ 
LEP

𝐸𝑀-derived processes
𝑒*𝑒+ → 𝑋𝛾, 𝑎 𝛾 ; 𝑒 𝑁 → 𝑒 𝑁 𝑋 , etc … 

Light mesons decay
𝜋,, 𝜂 → 𝛾 𝑋 or 𝜋, → 𝑎 ; 𝜋,, 𝜂 → 𝜒𝜒 etc …

Flavoured
interactions

Vector portal, ALP portal

For VMD, see e.g. 
Fujiwara et al. (1985)

Alwall et al. 2014

Belyaev et al. 2012

https://inspirehep.net/authors/1009252


ALP visible decay at PADME
• No NA48 limits (as from 
𝜋> → 𝛾𝑉 decays)
• Larger available parameter 

space for X17 than in the 
vector case
• Good prospects also for 

PADME with :
𝑒6𝑒7 → 𝑎 𝛾 → 𝑒6𝑒7 𝛾

Assuming large luminosity 
increases
--> It is likely that the current 
dataset could improve on 
KLOE

From 1710.03764 + NA64 recast of dark 
photon (naive à see true result 2104.13342)

E141

Resonant production 
not included



Example of 
background 
processes, 
estimated by 
LDMX

LDMX collaboration 1808.05219

LDMX collaboration 1808.05219


