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The X17, stating the obvious first

f16.9{1i0.12(stat) + 0.21(syst) MeV “He 2104.10075

 We look for a boson with mass: <

_16.70+0.35 (stat)+0.5 (sys) MeV 5Be 1504.01527

* The small mass implies
- No need for large +/s to produce a X17, makes beam dump experiments competitive.

In particular, in “worst case” of et driven processes on atomic electron

Ey, mm) Positrons below the GeV are still energetic
= 2m.Ep ~ 30 MeV X . T
Vs Melib © 1 GeV enough to produce a X17 in e"e™ annihilation

-> Accessible in decay of low mass particles e.g. ©°, u with large rates from small SM
decay width

s

MD* — MD ~ 140 MeV
—> But also from excited flavoured mesons == _ Mg — My = 45 MeV
See e.g. 2101.01865
" Etc...




Fixing notations: explicit Lagrangians for X17

* An axion-like particle (ALP) a, interacting via fy" y°f

1 Jas corresponds to

1 Ja - ,
LC 5(5’“a)(3“a) — 5777/2612 I Z Tf(a,ua) f7M75f Qf—fin Daniele

J=4,q Alves’s talk
* A light vector V¥, potentially with both vector and axial couplings

1 1 2 2 : r 5 Jy ¢ corresponds to
E D _ZVIU‘I/VMV —|_ §MV VIU’VH + V,U“ -f (-qvf _|— ’Y -qu)of — eZ;in Jonathan
f=L,q Feng’s and Tim Tait’s
talks

Most of the et /e -driven production rates shown in the rest of the talk satisfy

approximately:
et /e -driven production rates are pretty agnostic

MeGar < Gve  mmp concerning the X17 nature/couplings



The X17: the couplings

* Need a large couplings to quarks, but the actual couplings target depends

on the X17 nature

—> As a reference for the vector case

|gVu + 2 9vd

|ZgVu + 9vd

~ [0.6 - 10_3, 3. 1()_3] See e.g. 1608.03591, assumed BR,. at 1.

Huge couplings ! Protophobia

< . 1073
< 0.4-10 needed to escape NA48

* It has to decay (mostly) visibly into ete™

- For ATOMKI result, coupling with electron constrained only by a lower limit to ensure
decay length smaller than ~cm (we will discuss it in detail in this talk)

— Can have an invisible BR to e.g. a new dark sector particles but leads to even larger

coupling to quarks

—> Strong constraints on neutrinos interactions from v,e ~scattering experiments



X17: widths and productions

* Combined, the above requirements imply that the X17 must have a tiny
width, mostly driven by the e*e™ decay

Vector case

2 2 More challenging
dve Jve
FX - 127 MV ~ 0.5eV X (0_001) =) to produce it on
resonance
* Altogether we have the following situation
Nuclear processes
)

1 " e * et /e” beam dump

N and et /e~ collider
« e®™ = e X emission

sons decays
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X17 production strategies at accelerators:
an overview




Accelerator facilities (currently) available

* Intensity beam dumps: typically, » machines (beam S
neutrinos exp, SHiP).

= Large backgrounds + protophobia of X17 + far away detectors =
Challenging for X17

« ete™ colliders ( BaBaR, Belle-Il ...)

" Good production rates, large luminosity, but also background
control and the small py for the ete™ pair = Still interesting
avenue for X17 (displaced vertices?)

e eTe™ beam dumps: typically, e™ or e~ machine (NA64,
PADME, MAGIX, etc...)

" Large production rates, can search for displaced vertices or
reconstruct the e e~ pair = particularly suitable

* Rare meson/lepton decays = Promising, but with model-dependence



Rare decays searches

e Rare decays probes are both extremely effective in probing X17, often at
the price of a large model dependence

* Mesons decay probes (example from mostly last year)

, hep-ex/0610072 Feng et al.

2006.01151

_A

o J/W decays, charm couplings only  Ban etal. 2012.04190

Vector state

. oB* - BV,,,D* - D V;, for vector states Castro and Quintero 2101.01865

r —
om%> a;, oete”, K > n(m)a;, K > uvay;  egAlesetal. 1710.03763, 2009.05578

Axion
N

Lo m%> ay; a;; a;7 and other multi-leptons final states  Hostert and Pospelov 2012.02142

* If flavour-violation, many more available channels both in lepton decays
and in “standard” flavoured meson decay.

* Also radiative emission from u decay (cf Ann-Kathrin’s talk)
|\ -

omn? - y V17, for vector states: NA48 bounds implies proto-phobic (1604.07411,1608.03591)



-
X17 production in e™ /e~ machines
* Lepton-induced production is currently focused on Bremsstrahlung

- Positron machine have

- Electron-only machine more channels (annihilation
mostly rely on on beam target’s electrons)
Bremsstrahlung process For an ALP/axion X17
o, \\gff????f_fi___ ete
4 /
€ /
Bremsstrahlung < 7 <
2 .
Oge X 02 2 e : c
ae 7 TemJae 2 Z : Associated/ mono-y Resonant
i 2 M S 2
For an ALP/axion X17 T e ~ aemgGGQ_S log — Ores ~ TGqeMeO(EL — Epos)
(4




Beam energy dependence

* Bremsstrahlung CS depends only
feebly on the actual e /e~ energy

* Intensity, signal efficiencies, and control
of the background are the important
parameters!

* For resonant production one needs

to meet the resonance condition

2
my,

OezsezX (E)

FE, =
T 2M,

* For masses in the tens of MeV, low
energies are required ...

EXL7 ~ 280 MeV

* For associated production: the smaller the better since o «

|\ -

0.500 &

0.010F

0.005! — —
0005 0.010 0.050 0.100 0.500 1

y—

Significant reduction
only near beam energy

T

— Epeam= 11 GeV

S
S

|

E.; = 150 GeV

Adeuiwiaid ‘il

my [GeV]

,aslongas E >» EXL

log(s)
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.. but energy matters for decay lengths!

* Bremsstrahlung extracts most of the energy of the beam

Ex17 ) (17 MeV) 3-1074\° (Vector) Make displqced

100 GeV Jxe signatures viable
N for higher energy

Ex17 ) (17 MeV) (0.5 GeV ) (ALP) experiments

100 GeV/ \ myq7 Jxe

* By contrast, X17 from resonant production have relatively low energy

Yx17tx17 ~ 3 cm (
My17

Yx17€x17 ~ 3 cm (

m2,. o Displaced signatures viable
Ex$3 = T 280 MeV  ==h  yxi7 =15 ™ |y for the lowest allowed
e .
couplings

* However, resonant production implies that the decay production satisfy
precisely both EL§> ~ 280 MeV and m,, = my,



The case of resonant production




-
Going resonant ...

* What are the trade-offs of going to resonant production ?

- First, we need to find positrons somewhere (use a positron beam, rely on
secondary positron production in a thick target, etc...). Typically, this implies a certain
loss in energy + beam intensity

L ‘ Resonant process
, Bremsstrahlung
Gaellle

ot , process —> Cross-section x100-1000

< < < _ N times larger
- Cross-section 5
scales as Z? —>Fixed positron energy
Z > ALP/DP carries ) required
away most of the ©
9 beam energy:
2 2 M sensitivity up to 2 m 8(E. — E
Oge X — Opes ~ TTGGe.M —
ae emgaemg mgy ~ Ee+ res JaeMe ( + res)

However the gain in cross-section is enormous!
|\ -



How to get to the exact energy ?

» Study models with large invisible width I = not possible for the

X17

e Vary the beam energy (+ radiative return) seee.g. 1802.04756

— X17 has a narrow mass range, less than a MeV, only the narrow range [270
MeV, 290 MeV] needs to be probed

- "Scanning” procedure is required (possible only with the DA®NE beam at
LNF currently?)

 Use energy loss and secondary e™ production in the target to “scan”
naturally various positron energies

- Requires a “not-too-thin” target to allow some evolution of the beam
See e.g. 1802.03794, 2105.04540

|\ -



The thick target approach — positron beam

 Effective to probe a large
range of masses

 Since the X17 decay
visibly + no large boost =
Relatively thin target
required

* If the primary beam
energy energy is
significantly larger than
Ex17 res = marginal
production gain of having
a primary et beam.

Nres (10"°poT)
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Resonant production:
from “secondary” e

| Pb target, g,.=0.01 Ge\E/‘1 e 4 =2
: Epeam = 11 GeV : — =X
...... Crar = Xo/2
Resonant production

from primarye™
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\
Secondary positron production

From Marsicano et al. 1807.05884.
USRI N EL U R RN LR R R LN LR LU

= , | IEEEEN | 15 . : :
§ ol o <A secondary positron population build up
E E "-__::\ + 8 . .
. — 5 the shower “convert energy to statistics”
g [ Electron beam "'-n-%_ﬁ____ Positron beam = 17 Eini/2 o
T 10k T 2 N2 ~ Zmilz el[u
§ ; T— < € 280 M@V
>\<°10‘2;— . W target, 150 GeV e~ bea:m, 10" EOT e £, =15 X, . last 5 mm
% ; +++ : Crar=30 Xp ,last 5 mm
§10_3§_ +++ 103__ i = Lar=250 Xp ,last 5 mm
g 1 - |
g1 F * 3 |
2 Cosiig [ompn Lomen Boapgs Ly aea g psnls nemis samlby nu |
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 UR) |
Q x = EJE, 8 )
I |
— X17 resonant production occurs at any point & |
|
in the target, including at the end S i
< 102- i
] |
|
—> Background from the residual shower likely i
to swamp the signal 10* 2der Sl A0

|\ - Mx [MeV]



Resonant production: thin target

* In a thin target environment, the positron beam must be very near
the resonant energy of ~ 270 — 290 MeV
* The windows is directly related to the uncertainty in the X17 mass

—> Typical beam spread of 1 MeV or below imply that at least ten different
energies should be probed

* Extremely large production rates are expected when near the resonance
~ 3000 gg, GeV™1 ~0.03 cm

NavPsi .
Ny = Ntot%XZSixf(Eres)xo-XLtar ~ 10 gife Niot

St

~1 - -1
/\/ESE 400 GeV

7-10%%cm™3 (Gaussian distribution for the
beam energy)

* When not on the resonance, the signal will disappear -> bump search



Scanning strategy

* Several runs depending on
the beam spread

— more precision on X17
mass means less beam time

—2>Smaller spread implies
lower background

= Currently only LNF’s
accelerator complex can
provide a positron beam
and vary its energy

* Include radiative return
effects with use of NLO
ete”™ - ()X, with soft
photon emission

Ny per 10" poT, gv.=0.0001

Adeuiwi|aad ‘Ql

10°- -
ECtargeUOOﬂm —— 10"poT, 8E=1.4 MeV, 8runs
1043 — 2-10""poT , 8£=0.7 MeV, 16runs
-—-— &-estimate at LO, §£=0.7 MeV, 16runs
—3 | | | |
16.0 16.4 16.8 17.2 17.6

My [MeV]
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Conclusion




Conclusion

* X17’s "light” mass means that there are many complementary ways
of producing the X17

—>can provide an independent cross-check to the nuclear decay results

* Electron/positron-based facilities provide a relatively model-
independent way of testing the existence of this particle

* Resonant production mechanism can play an important role in
producing the X17, using of the fact that its possible mass is precisely
known.
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X17, some technical details

YW Viesons: fro foo ficr - Flavoured mesons decay . Flavour?d
— B-KX,K-nX,K—-inv orD,B,J]/¥ - ¢N etc.. Interactions
EM processes: Tei,T«y
ete™,pp ) Light mesons decay
' o, =y Xorm® = a; mtn = yy etc.. |, Vector portal, ALP portal
EM-derived processes
ete” > Xy,ay; eN—->eNX,etc..
* Mesons decays estimations Limit on rare BR
* No automatic tool available (new light states: not possible to apply standard B->KKo-m,
WET-based tools) ~ - inv, etc..
— Analytical calculation required. BR usually estimated by standard
techniques (yPT, Vector Meson Dominance, ...)  Forvvb,seeeg
Fujiwara et al. (1985)
* EM-derived processes N—— Limits on mono-
* For collider experiments: standard MC tools can be used (MG5_aMC@NLO, }» photonsearch
CalcHEP, etc...) Belvaevetal. 2012 @ BaBar/NA64/
LEP

* For beam dump = must include the track-lengths information, nucleus
form factors...

|\ -


https://inspirehep.net/authors/1009252

-

ALP VISlb‘e decay at PADME From 1710.03764 + NA64 recast of dark ‘

photon (naive = see true result 2104.13342)

* No NA48 limits (as from - i
79 — yV decays) _ KLOE+BaBar |

* Larger available parameter
space for X17 than in the
vector case

10°

* Good prospects also for
PADME with :

ete” »ay-»ete vy

g [GeV 7]

1071

Assuming large luminosity
Increases

--> |t is likely that the current Zac' Gay=1:0
dataset could improve on 10  1p! X1 3x10t

KLOE Resonant production
‘ m, [MeV] not included
\ -




LDMX collaboration 1808.05219

E | f ig%gtiVe incoming outgoing Veto Handles
Xa m p e O —100 e > e ///
10-! % bremsstrahlung
k d 102 v
Dackgroun it e\ -
10-5 —ry — hadrons i \\\\\
OIroOCessSeEs, 10¢ o et N
107 : 3
. 10-8 ﬂ’ +hadr0ns r»fy — ln/KL + soft
estimated by 00 NS i N
S Voot "-7 hia \
I_ D I\/l X 10-13 E
10-14 ‘\‘. 7/, Hard Track
1015 “yisible” 1 increasingly rare 8% Extra Tracks
10-16 backgrounds 3 photo-nuclear i ECal Energy
w *_16 v (Moller + CCOE N\ ECal Feature
LDMX collaboration 1808.05219 v e o oer + OCan) ' Heal Hits
Photo-nuclear Muon conversion
Target-area| ECal |Target-areaj ECal
EoT equivalent 4 %10 |21 x10"]|82x10" |24 x 101°
Total events simulated 8.8 x 10! |4.65 x 10| 6.27 x 10% | 8 x 1010
Trigger, ECal total energy < 1.5 GeV| 1 x 10® |2.63 x 10® | 1.6 x 107 | 1.6 x 108
Single track with p < 1.2GeV 2 x 107 |2.34x10%| 3.1x10* |1.5x 108
ECal BDT (> 0.99) 9.4 x 10° |1.32 x 10° <1 <1
HCal max PE < 5 =l | 10 <1 <1
ECal MIP tracks =0 =l | <1 <1 <1




