Searching for X17 at JLab (JLab PR12-21-003)

A. Gasparian NC A&T State University, NC USA

for the PRad collaboration

Outline

- Physics objectives (very short)
- the method
- experimental setup
- resolutions
- background, statistics and sensitivity
- Summary and outlook

Physics Goals of the Experiment

- Most of cosmological observations suggest that:
 - $\sim \approx 85\%$ of Universe consist of matter with "unknown origin", the so-called Dark Matter (DM)
 - DM either does not interact with the known, ordinary matter (SM) or if interacts, then very weakly (WIMPs), weak enough we can not detect them so far;
 - many theoretical models, many search experiments ...
 - ✓ no experimental detection of DM so far.
- DM can be detected through their interactions with the SM objects (particles/fields).
- A viable theoretical model suggests:
 - existence of "intermediate particles/fields" (portals) between DM and SM objects, providing interaction between DM and SM through the so-called "kinetic mixing" mechanism;
 - ✓ U(1) gauge boson (dark photon or X-particle);
 - \checkmark the [1-100] MeV mass range is well motivated, in particular.
- Recent experimental evidence: excess of e⁺e⁻ pairs in excited ⁸Be and ⁴He decay spectrum (ATOMKI anomaly, → hypothetical X17 particle or 5th-force carrier).

ATOMKI ⁸Be Experiment

- ⁸Be anomaly in nuclear transitions (*PRL 116(4):042501 (2016*):
 ⁸Be excited states, decaying to ground state by E/M transitions.
 p + ⁷Li → ⁸Be* → 7Li + p (hadronic decay)
 → ⁸Be + γ (E/M decay)
 → ⁸Be + γ*, γ* → e+e- (IPC)
 ✓ excess of e+e- pairs in angular distributions (inv. mass) beyond the
- expectation of the Internal Pair Conversion (IPC).
- Over hundred theory papers:
 - Feng *et al. PRL* 1 17, 071803 (2016):
 X17 vector boson, 5th force mediator with SM;
 - Ellwanger *et al. JHEP 11, 039 (2016):* possible light pseudoscalar particle;
 - Kozaczuk et al., PR D 95 115024 (2017): possible axial vector boson;
 - Zhang and Miller, *PL* B773:159-165, (2017):
 ... nuclear physics cannot explain the signal!
 - Zhang and Miller, *PL B 813:136061 (2021):* ... protophobic X17 requires smooth energy spectrum over threshold...
 - ATOMKI group presented new data proving that requirement.

ATOMKI⁴He Experiment

• New results on ⁴He with updated experimental setup and reduced background, *J. Phys.: Conf. Ser.* 1643, 012001 (2020) :

 $p + {}^{3}H \rightarrow {}^{4}He^{*} + \gamma \rightarrow {}^{4}He^{+} \gamma^{*}, \gamma^{*} \rightarrow e^{+}e^{-} (IPC)$

- \checkmark e⁺e⁻ peak at different angles but the same invariant mass.
- recently approved for publication.

- Requires an urgent independent experimental validation.

Objectives of this Experiment (PR12-21-003)

- Two experimental objectives:
 - 1) Discover or establish an experimental upper limit on the electroproduction of the hypothetical X17 particle, claimed in two ATOMKI low-energy proton-nucleus experiments.
 - 2) Search for "hidden sector" intermediate particles in [3 60] MeV mass range produced in electron-nucleus collisions and detected in e^+e^- (or $\gamma\gamma$) channels.

Many past and recent publications suggesting models predicting existence of scalar or pseudoscalar new particles in low mass range, [1–50] MeV, decaying through $\gamma\gamma$ channel.

• This experiment is equally sensitive to neutral decay channels $(X \rightarrow \gamma \gamma)$. (Significant advantage over many other proposals or running experiment).

Experimental Method

- The method:
 - "bump hunting" in the invariant mass spectrum over the beam background.
 - ✓ direct detection of all final state particles (e', e⁺e⁻ or $\gamma\gamma$) → full control of kinematics
- Electroproduction on heavy nucleus in forward directions:

 $e^- + Ta \rightarrow e' + \gamma^* + Ta \rightarrow e' + X + Ta$, with $X \rightarrow e^+e^-$ (with tracking) and/or $X \rightarrow \gamma\gamma$ (without tracking)

in mass range: [3 - 60] MeV target: Tantalum, ($_{73}$ Ta¹⁸¹), 1 μ m (2.4x10⁻⁴ r.l.) thick foil.

- All 3 final state particles will be detected in this experiment:
 - scattered electron, e', with 2 GEMs and PbWO₄ calorimeter;
 - decay e+ and e- particles, with 2 GEMs and PbWO₄ calorimeter;
 - or decay $\gamma\gamma$ pairs, with PbWO₄ calorimeter.
- Will provide a tight control of experimental background.

Event Selection Criteria

- Detection of all 3 final state particles will provide following event selection criteria:
 - conservation of total energy;
 - reaction coplanarity;
 - invariant mass;
 - ✓ particle charge;
 - reconstructed position on target plane.
- Critical feature of this experiment.
- Effects of these "cuts" are shown for PRad short test run on ¹²C target.
 - ... and for MC accidental events simulated for this experiment.

Invariant Mass

Proposed Experimental Setup in Hall B at JLab

- Experimental setup is based on the PRad apparatus:
 - > Hall B Photon Tagger will be used for PbWO₄ calorimeter calibration;
 - > 1 μ m Ta solid targets (2.4x10⁻⁴ r.l.) will be placed on a target ladder;
 - > Two planes of GEM detectors on front of the $PbWO_4$ calorimeter, providing limited tracking;
 - > Only the PbWO₄ part of the HyCal calorimeter will be used in this experiment.

Experimental Setup (Side View)

Scattering Chamber with Vacuum Window

The PRad scattering chamber will be used.

Reducer flange (1.7 m dia.)

- with twice reduced vacuum window size: \checkmark
 - 1m diameter and 1mm Al foil

Thin Al. window (1 m dia., 37 mil thick)

Experimental Apparatus: PbWO₄ Electromagnetic Calorimeter

- The inner PbWO₄ part of HyCal only will be used:
 - \checkmark 34 x 34 =1156 crystal modules, each with 2x2x18 cm³;
 - \checkmark with 68 x 68 cm² total detection area;
 - 2x2 crystals are removed from center for beam passage

Energy resolution (PrimEx measurement).

PbWO₄ crystals have excellent detection characteristics at MeV range energies too.

Figure 43: Measured relative resolution of the cluster energy response as a function of the incident photon energy E_{γ} for the center irradiation position in element 8. The errors are systematic.

M. Erzer, Masters Thesis, Mainz, 2020

Experimental Apparatus: GEM Coordinate Detectors (Tracking)

- Two planes of GEM detectors for tracking (limited tracking):
 - similar to PRad-II GEMs but smaller size: 68x68 cm² each;
 - located on front of PbWO₄, after the vacuum window;
 - relative distance (10 cm) optimized between resolution and available material after the vacuum window;
 - ✓ good position resolution (σ =72 μ m);
 - \checkmark will also be used to veto/select neutral clusters (like γ).
- Electronics: APV-25 based readout:

PRad GEMs (large size) before installation in Hall B.

Detection Efficiency (Geometrical Acceptance)

- Hardware trigger:
 - 3 clusters in PbWO₄ calorimeter;
 - ✓ each cluster energy: 30 MeV $< E_{clust} < 0.8xE_{beam}$ (rejects the elastic scattered electrons)
 - ✓ total energy sum in calorimeter: $\Sigma E_{clust} > 0.7 x E_{beam}$

Experimental Resolutions

- Good energy resolution of PbWO₄ calorimeter
 (2.6% @ E=1 GeV) and 1 μm thin target provides powerful energy cut in this experiment
 (ΔE = 47 MeV @ 3.3 GeV beam).
 - important selection criterion for multi-channel and accidental events;
 - critical cut at low-mass range (see next slides).

• Coplanarity (between $\overrightarrow{P_{e'}}$ and $(\overrightarrow{P}_{e+} + \overrightarrow{P}_{e-})$ vectors):

GEMs excellent position resolution (σ =72 μ m), together with very thin 1 μ m target (2.4x10⁻⁴ r.l.) provides an event selection criterion, important for:

- multi-particle and;
- accidental coincidence events.

Experimental Resolutions (cont.)

Physics Background Simulations

- Physics background was simulated in two different ways:
 - 1) with **GEANT** based MC simulation package;
 - 2) with MADGRAPH5 event generator and GEANT for tracing and detecting.
- 1) GEANT based Monte Carlo simulations
 - PRad-II GEANT based simulation package was adapted to this experimental setup;
 - all physics processes have been activated in GEANT;
 - large amount of beam electrons (Ne=3.5x10¹², equivalent to 5.6 s of beam time) passed through the target during MC simulations;
 - ✓ events with $N_{cluster} \ge 3$ were analyzed in the same way as the signals.

Physics Background Simulations (Method #2)

- 2) MADGRAPH5 based Monte Carlo simulations
 - MADGRAPH5 was used to generate large statistics (2M) trident events (Bethe-Heitler, Radiative trident, and interference);
 - these events were fed into the GEANT MC simulation package;
 - ✓ events with $N_{cluster} \ge 3$ were analyzed as the signals.

Physics Background Simulations (Comparison of Two Methods)

- Background simulation results were scaled to 200 seconds of beam time for comparison (left plot)
 - General agreement between two simulation methods;
 - slight shape difference (GEANT samples more small angle scattering events);
 - ✓ difference in total numbers is \approx 37% (14016 vs. 10571, integrated over the mass)
- Both simulated backgrounds were scaled to 30 days of beam time (right plot)
 - \checkmark they are used to estimate the 5 σ sensitivity in the coupling constant (ϵ) vs. mass phase space.

Accidental Background (Accidental Coincidence Rate)

- Hardware trigger requires 3-claster events:
 - ✓ $N_{cluster} \ge 3$
 - ✓ each one within: 30 MeV < E_{cluster} < 0.8xE_{beam}
 - ✓ E_{total} > 0.7xE_{beam}
 - Two high-rate processes in this experiment are:
 - electron-nucleus (Rutherford) elastic scattering (trigger will effectively suppress these events).
 - Moller scattering (source of major accidentals).
- Estimated rates for two main sources are:
 - ✓ singles from Moller: Rate \approx 107 kHz
 - ✓ doubles from Moller: Rate \approx 81.7 kHz
- Assuming 2 ns time resolution (bunch size):
 - ✓ accidental coincidence rate: \approx 17 Hz
 - ✓ is not a significant background contribution.

Statistics and Sensitivity Range

• Target: Ta; thickness: 1 μ m (t = 2.4x10⁻⁴ r.l.), N_{tgt} = 0.56x10¹⁹ atoms/cm² for E_e = 3.3 GeV and I_e = 100 nA (N_e = 6.25x10¹¹ e⁻/s),

Example: the estimated X17 production rate:

 $N_{X17} \sim N_{C} * N_{e} * t * \epsilon^{2} * (m_{e}/m_{x})^{2}$ (J. D. Bjorken et al. Phys. Rev. D, 80:075018, 2009) pprox 32,000 produced events per 30 days for ε^2 = 1.9x10⁻⁸ (N_c pprox 5) 100.0 nA × 30.0 days @ 3.3 GeV Time $\sigma_{stat.}$ of Background (days) 20000 Background - Fit 4.0 Setup checkout, calibration $M_{\chi} = 3.0 \text{ MeV}, \epsilon^2 = 2.8 \times 10^{-9}$ Counts / 0.4 MeV 12000 12000 M_x = 5.0 MeV, $\varepsilon^2 = 4.3 \times 10^{-9}$ 20.0 Production at 2.2 GeV, 50 nA M_x = 17.0 MeV, $\varepsilon^2 = 1.9 \times 10^{-8}$ 30.0 $M_X = 30.0 \text{ MeV}, \epsilon^2 = 5.1 \times 10^{-8}$ Production at 3.3 GeV, 100 nA $M_X = 40.0 \text{ MeV}, \varepsilon^2 = 8.8 \times 10^{-8}$ Energy change 0.5 $M_{\chi} = 50.0 \text{ MeV}, \epsilon^2 = 9.4 \times 10^{-8}$ 5000 $M_{\chi} = 60.0 \text{ MeV}, \epsilon^2 = 1.1 \times 10^{-7}$ Empty target runs 5.5 Total 60 0 0 10 20 30 50 60 70 Invariant Mass (MeV)

ϵ^2 vs. Mass Parameter Space

- Invariant mass range: [3 -- 60] MeV
- Coupling constant: $\varepsilon^2 \approx [10^{-9} 10^{-7}]$
- This proposal uses 5σ limits (discovery criterion as per PDG), while the common practice is to use from 2 to 2.4 σ.
- Example, NA64 results have 90% confidence limits.

Summary and Outlook

- We developed a cost-effective, ready-to-run experiment based on the PRad apparatus to:
 - 1) validate existence or set an experimental upper limit on X17 particle (on $\varepsilon^2 \approx 1.9 \times 10^{-8}$ level);
 - 2) search for hidden sector new particles in $[3 \div 60]$ MeV mass range.
- Detection of all 3 final state particles will provide a tight control of experimental background, reaching to a low range in coupling constant ($\varepsilon^2 \approx [10^{-9} 10^{-7}]$). (a unique feature of this experiment).
- The experiment is equally sensitive to charged (e⁺e⁻) or neutral (γγ) decay channels. (a unique feature of this experiment).
- Experiment was approved by PAC49 in past July with a C2 condition, requiring one more discussion (the background part) in next year's PAC50.
- We are preparing the experimental setup to be ready for a full approval.

arXiv:2108.13276 [nucl-ex]

my research work is supported in part by NSF award: PHY-1812421

Backup Slides

Other Similar Experiments/Projects at JLab

- HPS (running experiment at JLab)
 - ✓ search for A' → e^+e^- in M_{A'} = [20-1000] MeV;
 - magnetic spectrometer method;
 - ✓ only e⁺e⁻ detected, $ε^2 > 10^{-7}$;
 - ✓ with displaced vertex detection: $10^{-8} \le \varepsilon^2 \le 10^{-10}$
- APEX (running experiment at JLab)
 - ✓ search for A' → e^+e^- in $M_{A'} = [65-525]$ MeV;
 - magnetic spectrometer method;
 - ✓ only e⁺e⁻ detected, $\varepsilon^2 > 9x10^{-8}$;
- DarkLight (approved JLab experiment)
 - ✓ search for A' → e^+e^- in $M_{A'}$ = [10-90] MeV;
 - magnetic spectrometer method;
 - e^+e^- detected, $\varepsilon^2 > 3x10^{-7}$;

HPS: [hep-ex] arXiv:1807.11530, 2018

- The proposed experiment:
 - ✓ non-magnetic, will detect all 3 particles, e',e⁺,e⁻
 - ✓ search for X → $e^+e^-(\gamma\gamma)$ in M_X = [3 60] MeV;
 - ✓ similar range: $10^{-7} \le \varepsilon^2 \le 10^{-9}$
 - ✓ sensitive to neutral channels.

Other Similar Experiments/Projects

- NA64 (experiment and new proposal with SPS at CERN
 - ✓ combination of "beam dump" and direct e⁺e- detection;
 - first EM calorimeter is an active "dump" (~40 r.l.), second EM detects e+e- pairs;
 - assumes relatively long decay length for A' (or X);
 - total energy conservation;
 - ✓ mass range: \leq 23 MeV,
 - experiments in 2018 and 2020:

 $1.4x10^{-8} \le \varepsilon^2 \le 4.6x10^{-7}$ (90% confidence limit)

✓ new proposal for 2021.

- MAGIX (proposed experiment with MESA at Mainz)
 - ✓ search for A' → e^+e^- in $M_{A'} = [8 70]$ MeV;
 - magnetic spectrometer method;
 - ✓ only e⁺e⁻ detected, $\varepsilon^2 \approx [2x10^{-7} 8x10^{-9}]$

Reaction Kinematics

- 100 (cm) HyCal Y (cm) $E_e = 2.2 \ GeV$ 60 $M_{X17} = 17.0 \; MeV$ 80 $E_e = 2.2 \text{ GeV}$ Red: events from target $Z_{HyCol} = 10.0 \text{ m}$ Blue: from vacuum winde $M_{x17} = 17.0 \text{ MeV}$ 60 40 40 20 20 0 0 -20 -20 -40 PbWO₄ part -40 -60 HyCal outer size -80 -60 -100 -60 -40 -20 60 0 20 40 -100 -80 60 80 -60 -40 -20 0 20 40 100 Distribution of decay particles, HyCal X (cm) Y vs. X distr. of reconst. tracks on target plane X (cm)
- X-Y distribution of all 3 particles on HyCal

Reconstructed positions on target plane

Kinematics (invariant mass resolutions)

Physics Background Simulations (WAB Generator)

- Wide Angle Bremsstrahlung (WAB) generator was also used to estimate the background (suggested by HPS people).
 - ✓ 1 M events were generated for $E_e = 3.3$ GeV beam, equivalent to 1.25 sec of $I_e = 100$ nA beam;
 - ✓ generator thresholds: $E\gamma$ = 100 MeV, $\vartheta_{x,y}$ = 0.003 rad;
 - these events also fed to the GEANT MC code,
 - ✓ detected events with $N_{cluster} \ge 3$ were analyzed same way as the signals.

not significant contribution to the background

