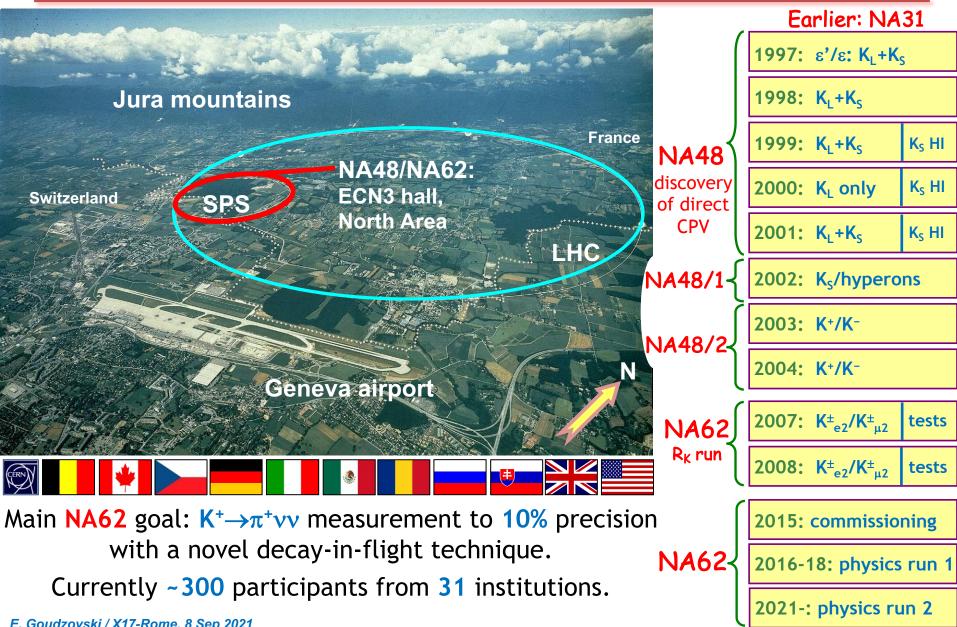
Searching for X17 in π⁰ decays by NA48/2 at CERN

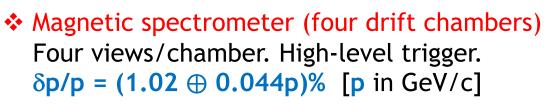
Evgueni Goudzovski

UNIVERSITY^{OF} BIRMINGHAM

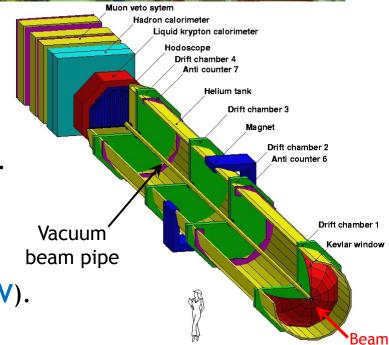
Outline:


- 1) CERN kaon programme and the NA48/2 experiment
- 2) Dark photon production in π^0 decays
- 3) NA48/2 search for dark photon production and decay
- 4) Summary and outlook

Shedding light on X17 Rome • 6-8 September 2021


Kaon experiments at CERN

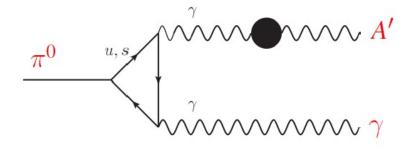
NA48/2 experiment & detector


- Simultaneous coaxial narrow momentum band K[±] beams:
 P_K = 60 GeV/c, δP_K/P_K ≈ 3% (rms).
- ✤ Rate of K[±] decays: ~100 kHz.
- ✤ Data taking: six months in 2003-04.
- Main trigger: 3-track vertex.

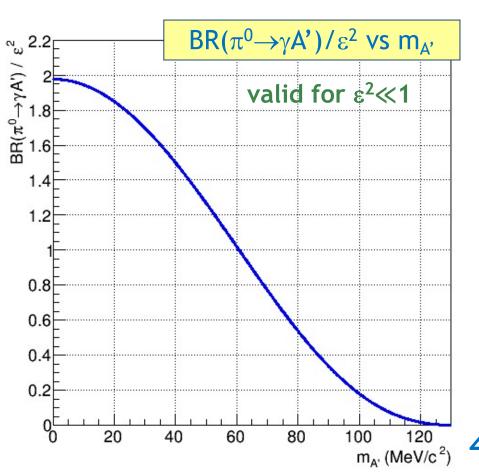
Principal subdetectors:

- Scintillator hodoscope (HOD)
 Low-level trigger, time measurement (150 ps).
- ★ Liquid Krypton EM calorimeter (LKr) High granularity, quasi-homogeneous; $\sigma_E/E = (3.2/E^{1/2} \oplus 9/E \oplus 0.42)\%$ [E in GeV]; ^b $\sigma_x = \sigma_y = (4.2/E^{1/2} \oplus 0.6)$ mm (1.5mm@10GeV).

NA62 Run 1 (2016-18) dataset

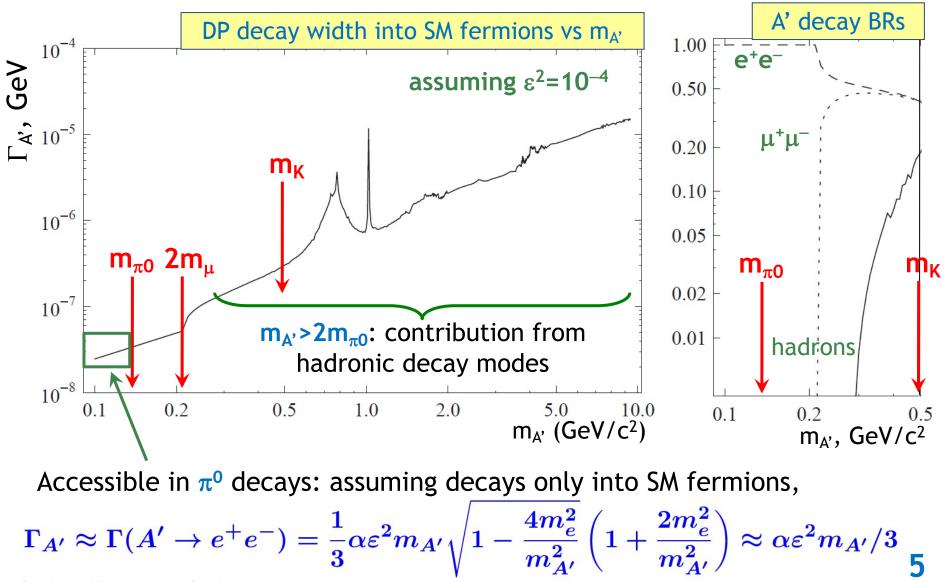

Run 1 integrated luminosity 2016 2017 2018 10¹⁸ POT Dec 16 Aug 17 Dec 17 2.2×10¹⁸ POT collected (3×10¹⁶ from 50h in dump mode) **Di-lepton triggers** are downscaled

- ✤ NA48/2 (6 months, 2003-04): ~2×10¹¹ useful K⁺ decays.
- ✤ NA62 run 2016 (30 days, ~1.3×10¹² ppp): 2×10¹¹ useful K⁺ decays.
- ✤ NA62 run 2017 (160 days, ~1.9×10¹² ppp): 2×10¹² useful K⁺ decays.
- ✤ NA62 run 2018 (217 days, ~2.3×10¹² ppp): 4×10¹² useful K⁺ decays.
- ✤ NA62 Run 2: started in July 2021 (~3×10¹² ppp).


Dark photon production: $\pi^0 \rightarrow \gamma A'$

Batell, Pospelov and Ritz, PRD80 (2009) 095024

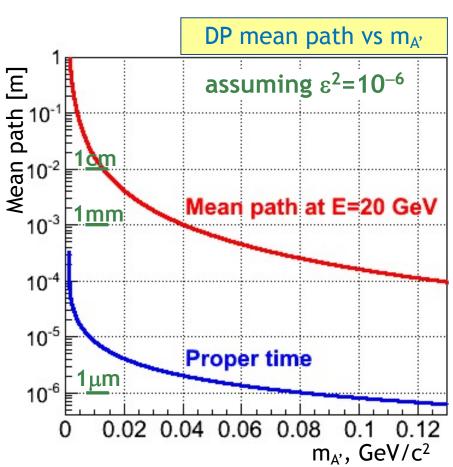
$${\cal B}(\pi^0 o \gamma A') = 2 arepsilon^2 \left(1 - rac{m_{A'}^2}{m_{\pi^0}^2}
ight)^3 {\cal B}(\pi^0 o \gamma \gamma)$$



- Two free parameters:
 mass (m_{A'}) and mixing (ε²).
- Sensitivity to DP for $m_{A'} < m_{\pi 0}$.
- ★ Loss of sensitivity to $ε^2$ at higher $m_{A'}$ values, due to kinematic suppression of the $π^0 \rightarrow γA'$ decay.

DP decays into SM fermions

Batell, Pospelov and Ritz, PRD79 (2009) 115008



DP lifetime and mean path

Dark photon proper lifetime below the di-muon threshold:

 $c au_{A'}pprox 0.8 \ \mu{
m m} imes \left(rac{10^{-6}}{arepsilon^2}
ight) imes \left(rac{100 \ {
m MeV}}{m_{A'}}
ight)$ For $\varepsilon^2 > 10^{-7}$ and $m_{A'} > 10$ MeV/ c^2 DP path length ε^2

- respect to the resolution on the vertex longitudinal coordinate (~1 m).
- DP decay can be considered prompt.
- DP production and decay signature $(\pi^0 \rightarrow \gamma A', A' \rightarrow e^+e^-)$ is identical to that of the Dalitz decay, $\pi^0_{\ D} \rightarrow \gamma e^+ e^-$.

NA48/2 data sample

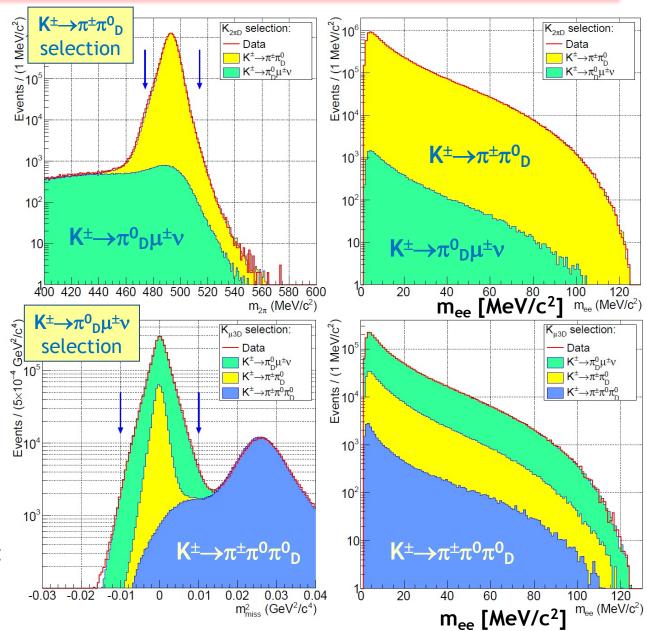
- ♦ NA48/2 data: $\sim 2 \times 10^{11}$ K[±] decays in the fiducial decay region.
 - ✓ Production and decay in vacuum of $\sim 5 \times 10^{10}$ tagged, boosted π^0 mesons.
 - ✓ Mean path of the π^0 is negligible (few µm).
 - ✓ Sources of π^0 mesons considered: K[±]→ $\pi^{\pm}\pi^0$ decay (BR=20.7%) and K[±]→ $\pi^0\mu^{\pm}\nu$ decay (BR=3.4%).
- ♦ Search for the prompt $\pi^0 \rightarrow \gamma A'$, $A' \rightarrow e^+e^-$ decay chain.
 - ✓ Identical signature to the $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}{}_{D}$ and $K^{\pm} \rightarrow \pi^{0}{}_{D} \mu^{\pm} \nu$ decays, three-track vertex topology.
 - ✓ Sensitivity is limited by irreducible $\pi^0_{D} \rightarrow \gamma e^+e^-$ background (BR=1.2%).
 - ✓ Efficient trigger chain for 3-track vertices based on
 HOD multiplicity (L1) and spectrometer track reconstruction (L2).
 - ✓ Search for a narrow peak in e^+e^- invariant mass spectrum.
 - ✓ Good e^+e^- mass resolution: $\sigma_m \approx 0.011 \times m_{ee}$.
- ★ Acceptances for both K[±]→π[±]π⁰ and K[±]→π⁰μ[±]ν signal chains: depending on m_{A'}, up to 4.5%.

The π^0_D sample

Two exclusive selections

 $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}_{D}$ selection:

- |m_{πγee}-m_K|<20 MeV/c²;
- $|m_{\gamma ee} m_{\pi 0}| < 8 \text{ MeV/c}^2;$
- no missing momentum.


 $K^{\pm} \rightarrow \pi^0_{D} \mu^{\pm} \nu$ selection:

- $m_{miss}^2 = (P_K P_\mu P_{\pi 0})^2$ compatible with zero;
- $|m_{\gamma ee} m_{\pi 0}| < 8 \text{ MeV/c}^2;$
- non-zero missing total & transverse momentum.

Reconstructed π^0_D decay candidates:

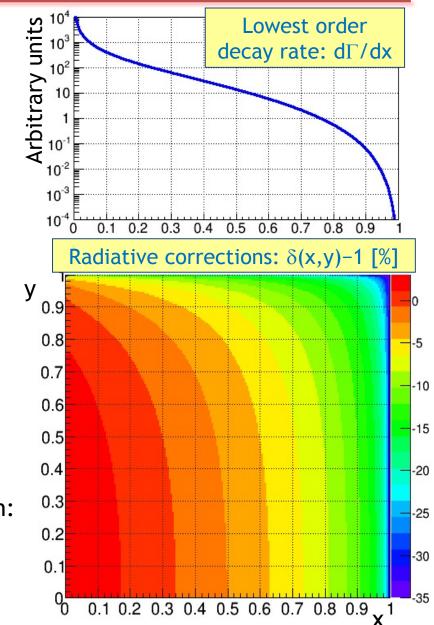
- $N(K_{2\pi D}) = 1.38 \times 10^7$,
- $N(K_{\mu 3D}) = 0.31 \times 10^7$,
- total = 1.69×10^7 .

 K^{\pm} decays in fiducial region: N_K = (1.57±0.05)×10¹¹.

The π^0_D background

Kinematic variables:

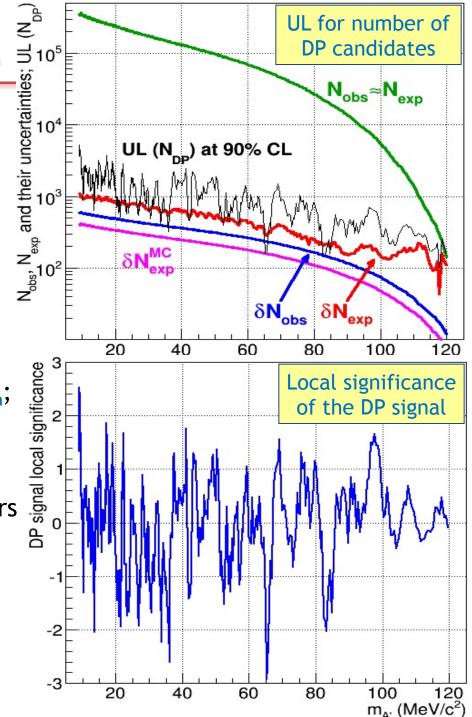
$$x = \frac{(Q_1 + Q_2)^2}{m_{\pi^0}^2} = (m_{ee}/m_{\pi^0})^2, \qquad y = \frac{2P(Q_1 - Q_2)}{m_{\pi^0}^2(1 - x)}$$

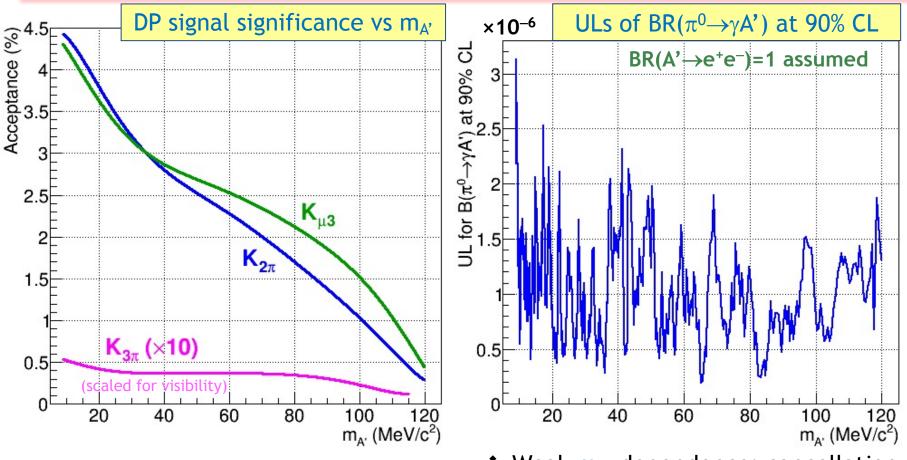

Differential decay rate (lowest order):

$$\begin{aligned} \frac{d^2\Gamma}{dxdy} &= \Gamma_0 \frac{\alpha}{\pi} |F(x)|^2 \frac{(1-x)^3}{4x} \left(1+y^2+\frac{r^2}{x}\right) \\ \text{(r=2m_e/m_{\pi})} \end{aligned}$$

Radiative corrections:

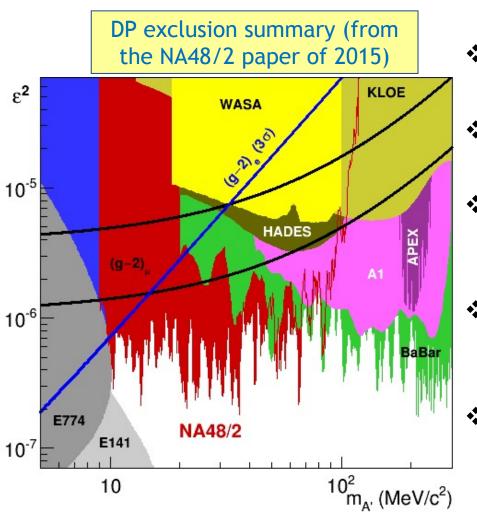
$$rac{d\Gamma}{dxdy}=\delta(x,y)rac{d\Gamma^0}{dxdy}$$


- Real photon emission is included. [Husek et al., PRD 92 (2015) 054027]
- Electromagnetic π^0 form factor (FF): F(x) = 1+ax
- The most precise FF slope measurement in the time-like momentum transfer region: a = (3.68±0.57)×10⁻² [NA62-RK collab., 2007 data, PLB768 (2017) 38]


Search for DP signal z

DP signal: a narrow peak in the m_{ee} spectrum of π^0_D candidates

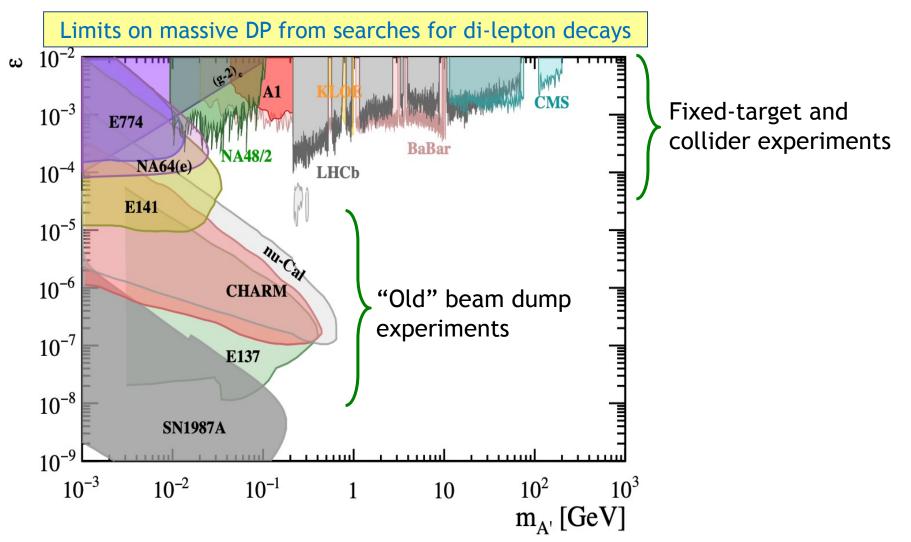
- Dark photon mass scan:
 - range: 9 MeV/c²≤m_{A'}<120 MeV/c²;
 - at lower m_{A'}, background acceptance simulation has limited precision;
 - variable mass step of $0.5\sigma_m$;
 - signal mass window optimised to maximize expected sensitivity: ±1.5σ_m;
 - mass hypotheses tested: 404.
- For each m_{A'}, frequentist confidence intervals for N_{DP} obtained from numbers of observed and expected events (N_{obs}, N_{exp}, dN_{exp}).
- Local signal significance never exceeds 3σ: no DP signal is observed.

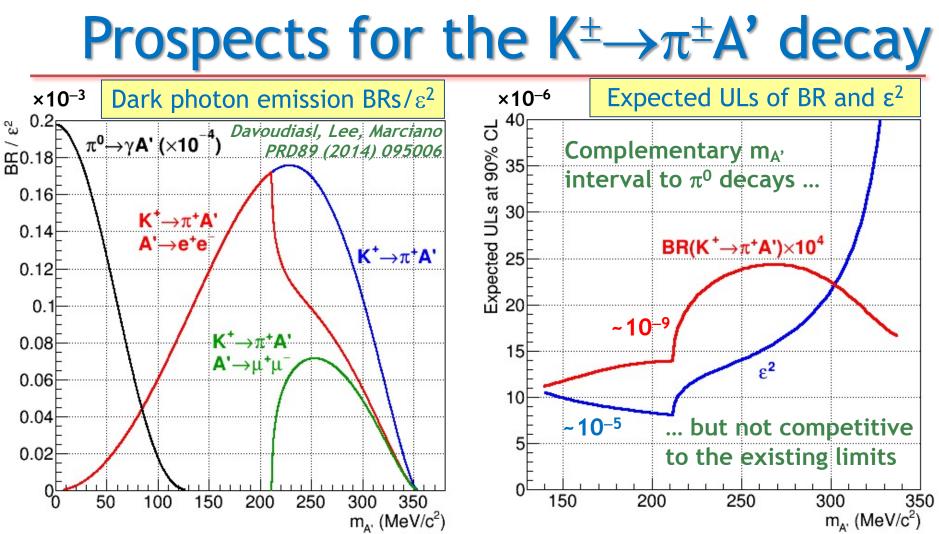

Search for DP signal (2)

Acceptances of the DP selection for $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}$, $K^{\pm} \rightarrow \pi^{0}\mu^{\pm}\nu$ and $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}$ decays followed by the prompt $\pi^{0} \rightarrow \gamma A'$, $A' \rightarrow e^{+}e^{-}$ decay chain.

- Weak m_{A'} dependence: cancellation of m_{A'} dependences of background fluctuation and acceptance.
- The obtained limits are backgroundlimited (2-3 orders of magnitude above single event sensitivity).

DP exclusion: the results




NA48/2 collaboration, PLB746 (2015) 178

- ✤ Improvement on the earlier limits in the m_{A'} range 9-70 MeV/c².
- Most stringent limits are at low m_{A'} (kinematic suppression is weak).
- Sensitivity limited by the irreducible π^0_D background, ULs are 2–3 orders of magnitude above SES.
- Upper limit of ε² scales as ~(1/N_K)^{1/2}:
 difficult to improveme with larger samples.
- ✤ If DP couples to quarks and decays mainly to SM fermions, it is ruled out as the explanation for the anomalous (g-2)_µ.

A more recent exclusion plot

Fabbrichesi, Gabriellli, Lanfranchi, arXiv:2005.01515

Comparison of $(K^{\pm} \rightarrow \pi^{\pm}A', A' \rightarrow e^{+}e^{-}, m_{A'} > m_{\pi 0})$ vs $(\pi^{0} \rightarrow \gamma A', A' \rightarrow e^{+}e^{-}, m_{A'} < m_{\pi 0})$:

- ★ Lower irreducible background: $BR(K^{\pm} \rightarrow \pi^{\pm}e^{+}e^{-}) \sim 10^{-7} \text{ vs } BR(\pi^{0}_{D}) \sim 10^{-2}$.
- ↔ Higher acceptance (×4), favourable K/π^0 flux ratio (×4).
- ★ Therefore the expected BR limits: $BR(K^{\pm} \rightarrow \pi^{\pm}A') \sim 10^{-9}$ vs $BR(\pi^{0} \rightarrow \gamma A') \sim 10^{-6}$.

♦ However BR(K[±]→ π^{\pm} A')/BR(π^{0} → γ A')~10⁻⁴, expected ε² limits are ε²~10⁻⁵. 14

Summary and outlook

- Dark photon search in π^0 decays: [PLB746 (2015) 178]
 - ✓ Integrated K^{\pm} flux analysed: 1.7×10¹¹ decays in flight.
 - $\checkmark\,$ Assumption: DP decays into SM fermions only.
 - ✓ Limits obtained on DP mixing are still state-of-the-art.
 - ✓ The strongest limits ($\epsilon^2 \sim 2 \times 10^{-7}$) are at the ~10 MeV/c² mass.
 - ✓ A background-limited measurement.
 - ✓ Search via $K^{\pm} \rightarrow \pi^{\pm} A'$ ($m_{\pi 0} < m_{A'} < m_{K} m_{\pi}$) is not competitive.
- Can we expect improvements at NA62?
 - ✓ Downscaled e^+e^- trigger: Run 1 π^0_D sample is comparable to NA48/2.
 - ✓ Improved e^+e^- mass resolution: factor ~2.5 lower background.
 - \checkmark More forward geometry: lower acceptance at low $m_{\rm ee}.$
 - ✓ Lower ε^2 , $\pi^0 \rightarrow \gamma A'$ with a displaced $A' \rightarrow e^+e^-$ vertex? Sensitivity needs to be studied.
 - ✓ See also: NA62 results on K⁺→ π^+ + invisible). [JHEP 02 (2021) 201]