

Beryllium anomaly search with the MEGII experiment at PSI

Angela Papa, University of Pisa/INFN and Paul Scherrer Institut Sept 6th -8th, Rome, Italy

"Shedding light on the X17" workshop

Content

- cLFV with the MEGII experiment: The $\mu^+ \to e^+ \gamma$ decay search at PSI
- Beryllium anomaly search with the MEGII apparatus: Status

Content

- · cLFV with the MEGII experiment: The $\mu^+ \to e^+ \gamma$ decay search at PSI
- Beryllium anomaly search with the MEGII apparatus: Status

Charged lepton flavour violation search: Motivation

too small to access experimentally

BSM

an experimental evidence: a clear signature of New Physics NP (SM background FREE)

 $\tilde{\chi}^0$

Current upper limits on \mathcal{B}_i

 μ

Complementary to "Energy Frontier"

Energy frontier

Real BSM particles

Virtual BSM particles

$$\mathcal{L}_{eff} = \mathcal{L}_{\mathcal{SM}} + \sum_{d>4} rac{c_n^{(d)}}{\Lambda^{d-4}} \mathcal{O}^{(d)}$$

Unveil new physics

Probe energy scale otherwise unreachable

cLFV searches with muons: Status and prospects

In the near future impressive sensitivities:

	Current upper limit	Future sensitivity
$\mu \to e \gamma$	4.2 x 10 ⁻¹³	~ 6 x 10 ⁻¹⁴
$\mu \rightarrow eee$	1.0 x 10 ⁻¹²	~1.0 x 10 ⁻¹⁶
$\mu N \rightarrow e N'$	7.0 x 10 ⁻¹³	few x 10 ⁻¹⁷

· Strong complementarities among channels: The only way to reveal the mechanism responsible for cLFV

The world's most intense continuous muon beam

- τ ideal probe for NP
 w. r. t. μ
 - Smaller GIM suppression
 - Stronger coupling
 - Many decays
- µ most sensitive probe
 - Huge statistics

- PSI delivers the most intense continuous low momentum muon beam in the world (Intensity Frontiers)
- MEG/MEG II/Mu3e beam requirements:
 - Intensity O(10⁸ muon/s), low momentum p = 29 MeV/c
 - Small straggling and good identification of the decay

590 MeV proton ring cyclotron

1.4 MW

PSI landscape

MEG: Signature and experimental setup

- The MEG experiment aims to search for $\mu^+ \to e^+ \gamma$ with a sensitivity of ~10⁻¹³ (previous upper limit BR($\mu^+ \to e^+ \gamma$) $\leq 1.2 \times 10^{-11}$ @90 C.L. by MEGA experiment)
- Five observables (E_g, E_e, t_{eg}, θ_{eg} , φ_{eg}) to characterize $\mu \rightarrow e\gamma$ events

MEG: The key elements

1. The world's intense low momentum muon beam stopped in a thin and slanted target

2. The gradient field e+-spectrometer

3. The innovative Liquid Xenon calorimeter

4. The full waveform based DAQ (digitization up to 1.6 GSample/s)

5. Complementary calibration and monitoring methods

MEG: The result

- Confidence interval calculated with Feldman & Cousin approach with profile likelihood ratio ordering
- Profile likelihood ratios as a function of the BR: all consistent with a null-signal hypothesis

Full data sample: 2009-2013
Best fitted branching ratio at 90% C.L.:

$$\mathcal{B}(\mu^+ \to e^+ \gamma) < 4.2 \times 10^{-13}$$

From MEGA to MEG:

improvement by a factor ~ 30

Systematic uncertainties: Target "alignment": 5%

Other sources: < 1%

high resolutions

How the sensitivity can be pushed down?

More sensitive to the signal...

More effective on rejecting the background...

$$B_{acc} \sim R \times \Delta E_{e} \times (\Delta E_{gamma})^{2} \times \Delta T_{egamma} \times (\Delta \Theta_{egamma})^{2}$$

$$Positron Energy Fining Fining Sittion Gamma Energy Fining Sittion Fining F$$

The MEGII experiment

New electronics: Wavedream

~9000 channels at 5GSPS

x2 Resolution everywhere

Updated and new Calibration methods

Quasi monochromatic positron beam

The MEG experiment vs the MEGII experiment

The MEG experiment vs the MEGII experiment

Where we will be

Where we are: eng run/physics run 2021

MEGII: The new electronic - DAQ and Trigger

- Full electronics (DAQ and Trigger) installed
 - ~9000 channels (up to 5 GSPS)
 - Bias voltage, preamplifiers and shaping included for SiPMs
- Trigger electronics and several trigger algorithms included and successfully delivered for the test beams/engineering run

MEGII: The upgraded LXe calorimeter

- Increased uniformity/resolutions
- Increased pile-up rejection capability
- Increased acceptance and detection efficiency
- Assembly: Completed
- Detector filled with LXe
- Purification: Ongoing
- Monitoring and calibrations: Ongoing

	MEG	MEGII
u [mm]	5	2.4
v [mm]	5	2.2
w [mm]	6	3.1
E [w<2cm]	2.4%	1.1%
E [w>2cm]	1.7%	1.0%
t [ps]	67	60

MEGII: The upgraded LXe calorimeter

Detector commissioning: Ongoing

MEGII: The new single volume chamber

- Improved hit resolution: $\sigma_r \sim < 120 \text{ um}$ (210 um)
- High granularity/Increased number of hits per track/ cluster timing technique
- Less material (helium: isobutane = 90:10, $1.6x10^{-3}X_0$)
- High transparency towards the TC
- Status: Detector commissioning with muon beam ongoing

	MEG	MEGII
p [keV]	306	130
heta [mrad]	9.4	6.3
ϕ [mrad]	8.7	5.0
€ [%]*	40	70

(*) It includes also the matching with the Timing Counter

drift tube

MEGII: The new single volume chamber

Detector commissioning: Ongoing

MEGII: the pixelized Timing Counter

- Higher granularity: 2 x 256 of BC422 scintillator plates (120 x 40 (or 50) x 5 mm³) readout by AdvanSiD SiPM ASD-NUM3S-P-50-High-Gain
- Improved timing resolution: from 70 ps to 35 ps (multihits)
- Less multiple scattering and pile-up
- Expected detector performances confirmed with data (exposure to the muon beam) during pre-eng. 2016 and 2017

MEGII: the pixelized Timing Counter

Full commissioned: Ready for MEGII

MEGII: The Radiative Decay Counter

 Added a new auxiliary detector for background rejection purpose. Impact into the experiment: Improved sensitivity by 20% LYSO 2 x 2 x 2 cm³ • Commissioning during the 2016 pre-engineering run MPPC S12572-025 BC418 **MPPC** • Status: Ready for MEGII S13360-3050PE ~22 cm γ detector COBRA magnet $\gamma \text{ (RMD)}$ RDC $e^+(RMD)$ μ^+ beam = e+ (Michel) e^+ spectrometer

MEGII: new calibration methods and upgrades

- CEX reaction: $p(\pi^-,\pi^0)n$, $\pi^0 \rightarrow \gamma\gamma$
- 1MV Cockcroft-Walton accelerator
- Pulsed D-D Neutron generator
- NEW: Mott scattered positron beam to fully exploit the new spectrometer
- NEW: SciFi beam monitoring. Not invasive, ID particle identification, vacuum compatible, working in magnetic field, online beam monitor (beam rate and profile)
- NEW: Luminophore (CsI(TI) on Lavsan/Mylar equivalent) to measure the beam properties at the Cobra center

MC BCF12 250 x 250 um²

• NEW: LXe X-ray survey

Content

- cLFV with the MEGII experiment: The $\mu^+ \to e^+ \gamma$ decay search at PSI
- Beryllium anomaly search with the MEGII apparatus: Status

MEGII spectrometer + The CW accelerator

- Beryllium anomaly search with the MEGII apparatus: aiming at performing the measurement with a different apparatus and improved detector performances
- The key ingredients:
 - The CW accelerator able to deliver protons up to 1.1 MeV energy (maximal current = 100 uA)
 - MEGII spectrometer with reduced magnetic field to detect the e+ epair (B field reduced by ~0.17 to cover the proper energy range of the e+ e- pair)
 - A new target/CW end line optimised for the Beryllium anomaly search

The MEGII CW accelerator

- The CW accelerator is abundantly used in the MEGII experiment to calibrate and monitor the MEGII sub-detectors (LXe calorimeter/TC and recently CDCH) using the Li resonance at 440 keV and the B reaction at 1 MeV
- The CW beam line reaches the center of the MEGII apparatus from DS (opposite to US direction from where the muons come)
- Settings for the Beryllium anomaly search: Protons with Ep = 1.1 MeV and Ip = 1 uA

The new target region

The new target region has been optimised based on the GEANT4 simulation and ASYS simulations

Proton beam tuning at reduced magnetic field

- To perform the Beryllium anomaly measurement the default magnetic field (1.25 T at Cobra Center) must be reduced by a factor ~0.17
- A field map at reduced magnetic field and the proton beam tuning in this conditions have been performed

External gamma conversion events from Li in the CDCH detector

- To perform the Beryllium anomaly measurement the default magnetic field (1.25 T at Cobra Center) must be reduced by a factor ~0.17
- A very first look at external conversion of gammas from Li events with the magnetic field on/off (below with magnetic field off) has been done and will be fully exploit during the next HIPA service shut down (Sept & Oct)

Beryllium anomaly search: Signal and Backgrounds

- MC simulation based on GEANT4
- Signal (assumed rate from ATOKMI measurement)
- Backgrounds: EPC (depends on the material of the experimental setup) and IPC
- IPC: Resonant from 18.1 MeV gamma conversion (M1 transition) and non resonant (multi polarities)
 - Implemented the Zhang-Miller model
- Signal rate: ~ 7 10-2 /s
- Background (IPC) rate ~ 40 /s

Beryllium anomaly search: Observables

Significance

5σ significance after ~50 h DAQ at 1uA

Executive plan for the Beryllium anomaly search

- Goal: Measurement during the HIPA main shutdown 2022
- Preparation for the final measurements integrated in the MEGII
 2021 schedule without interference with the main MEGII program:
 - Build all new parts for the setup
 - Execute and complete all hardware and mechanical tests
 - Implement and test the TDAQ
 - Collect and analyse curved tracks at reduced magnetic field during the HIPA accelerator service periods

Outlooks

• The MEG experiment has set a new upper limit for the branching ratio of $B(\mu^+ \rightarrow e^+ \gamma) < 4.2 \times 10^{-13}$ at 90% C.L. (a factor 30 improvement with respect to the previous MEGA experiment and also the strongest bound on any forbidden decay particle)

 An upgrade of the apparatus is ongoing: MEGII is going to start the full engineering run followed by a physics run aiming at a sensitivity down to 6 x 10-14

• The MEGII apparatus can explore also the **Be anomaly**. A **dedicated measurement** is scheduled during the HIPA shut down **2022**

Thanks for your attention

