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Introduction
● Aim of this lesson is to introduce the 

basic DAQ concepts avoiding as many 
technological details as possible 
– The following lectures will cover these aspects
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Outline
● Introduction

– What is DAQ?
– Overall framework

● Basic DAQ concepts
– Digitization, Latency
– Deadtime, Busy, Backpressure
– De-randomization

●  Scaling up
– Readout and Event Building
– Buses vs Network
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● Data AcQuisition (DAQ) is
– the process of sampling signals 
– that measure real world physical conditions 
– and converting the resulting samples into digital 

numeric values that can be manipulated by a PC

● Components:
– Sensors: convert physical quantities to 

electrical signals
– Analog-to-digital converters: convert conditioned 

sensor signals to digital values
– Processing and storage elements

[Wikipedia]
noprint

What is DAQ?
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What is acquired?
An acquired value is nothing without a context

● The 5W rule of journalism apply here!
– What, Who, When, Where,  Why

– What: value actually recorded
– Who: which sensor has been read? 

very important if you have millions of channels…

– When: timestamping!!
very important if you run for days at kHz frequency…

– Where: you have to know the external conditions 
– Why: never forget your final goal

T
D

A
Q
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What is DAQ?
● DAQ is an heterogeneous field

– Boundaries not well defined

● An alchemy of
– physics 
– electronics 
– computer science
– hacking 
– networking 
– experience

● Money and manpower 
matter as well
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Something interesting
● Main role of DAQ

– process the signals 
generated in a detector 

– and saving the 
interesting information 
on a permanent 
storage

● What does it mean 
interesting?
– When does this 

happen?

● We need a trigger
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Trigger
● Either selects interesting events or rejects 

boring ones, in real time
– Selective: efficient for “signal” 

and resistant to “background”
– Simple and robust
– Quick 

● With minimal controlled latency
– time it takes to form and distribute its decision

● The trigger system generates a prompt signal 
used to start the data-acquisition processes
– To be distributed to front end electronics
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Double paths
● Trigger path

– From dedicated detectors to trigger logic

● Data path
– From all the detectors to storage 
– On positive trigger decision

Trigger and DAQ
trigger
path

decisions

Storage
data
path

Trigger

DAQ

trigger decisions
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Trigger(less)

● Triggered (data pull): data is readout from 
detector only when a trigger signal is raised

● Triggerless (data push): the detector push 
data at its speed and the downstream daq must 
keep the pace

DAQ

DAQ
trigger
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Trigger(less)

DAQ

DAQ
trigger

● Triggered (data pull): data is readout from 
detector only when a trigger signal is raised

● Triggerless (data push): the detector push 
data at its speed and the downstream daq must 
keep the pace
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DAQ duties
● Gather data produced by detectors

– Readout

● Form complete events 
– Data Collection and Event Building

● Possibly feed other trigger levels 
– High Level Trigger

● Store event data 
– Data Logging

● Manage the operations
–  Run Control, Configuration, Monitoring  

Data Flow



Mauro.Villa@unibo.it Intro to DAQ 16

T-DAQ

Front End Electronics

Readout/Event Building

  High 
  Level
  Trigger

Storage

Trigger

M
o

n
ito

rin
g

 &
 C

o
n

tro
l &

 C
o

n
fig

u
ratio

n

DAQ

Run!

Detector Channels

Readout Network

Event Building Network

noprint



Mauro.Villa@unibo.it Intro to DAQ 17

Readout/Event Building

  High 
  Level
  Trigger

Storage

M
o

n
ito

rin
g

 &
 C

o
n

tro
l &

 C
o

n
fig

u
ratio

n

DAQ

Run!

Detector Channels

Readout Network

Event Building Network

Trigger
Front End Electronics

noprint

T-DAQ



Mauro.Villa@unibo.it Intro to DAQ 18

  High 
  Level
  Trigger

Storage

M
o

n
ito

rin
g

 &
 C

o
n

tro
l &

 C
o

n
fig

u
ratio

n

DAQ

Run!

Detector Channels

Readout Network

Event Building Network

Trigger
Front End Electronics

Readout/Event Building

T-DAQ



Mauro.Villa@unibo.it Intro to DAQ 19

Storage

M
o

n
ito

rin
g

 &
 C

o
n

tro
l &

 C
o

n
fig

u
ratio

n

DAQ

Run!

Detector Channels

Readout Network

Event Building Network

Trigger
Front End Electronics

Readout/Event Building

  High 
  Level
  Trigger

noprint

T-DAQ



Mauro.Villa@unibo.it Intro to DAQ 20

Storage

M
o

n
ito

rin
g

 &
 C

o
n

tro
l &

 C
o

n
fig

u
ratio

n

DAQ

Run!

Detector Channels

Readout Network

Event Building Network

Trigger
Front End Electronics

Readout/Event Building

  High 
  Level
  Trigger

T-DAQ



Mauro.Villa@unibo.it Intro to DAQ 21

Front End Electronics

Readout/Event Building

  High 
  Level
  Trigger

Storage

Trigger

M
o

n
ito

rin
g

 &
 C

o
n

tro
l &

 C
o

n
fig

u
ratio

n

DAQ

Run!

Detector Channels

Readout Network

Event Building Network

T-DAQ



Mauro.Villa@unibo.it Intro to DAQ 22

The glue of your experiment
● Configuration

– The data taking setup

● Control
– Orchestrate applications 

participating to data taking
– Via distributed 

Finite State Machine

● Monitoring
– Of data taking operations
– What is going on? 
– What happened? 

When? Where?
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Data fragments, events
● DAQ systems can be very complex
● Many sources of data (many subdetectors)
● Data fragment: collection of data of the same 

detector (uniform) related to a given trigger 
event and/or of the same time-tag

● DAQ Event: collection of data fragments from 
different detectors related to a given trigger 
event and/or of the same time-tag

Data fragments

  DAQ Events

Event building
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● Introduction
– What is DAQ?
– Overall framework

● Basic DAQ concepts
– Digitization, Latency
– Deadtime, Busy, Backpressure
– De-randomization

●  Scaling up
– Readout and Event Building
– Buses vs Network

Outline

Via a toy model
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Two flavors of DAQ
● Periodic sampling

– Periodic trigger (deterministic)
– Domain of loggers & data push architectures

● Triggered sampling
– A trigger condition is needed to acquire data

● Directly from the detector 
● During the processing of the analog signal 
● On the digitized signals
● On a fraction of the full event

– Data pull architectures
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● Eg: measure temperature at a fixed frequency
– Clock trigger

● ADC performs analog to digital conversion, 
digitization (our front-end electronics)
– Encoding analog value into binary representation

● CPU does 
– Readout, Processing, Storage

Basic DAQ: periodic trigger

ADC CardT sensor CPU

   Physical View

disk

noprint
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● Encoding an analog value 
into binary representation
– Comparing entity with a ruler

● Different basic digitization
– ADC: Analog to Digital Converter

● (voltages or currents)
● FADC: Flash ADC for waveforms 

– QDC: Charge to Digital Converter
– TDC: Time to Digital Converter 

Digitization

Entity to be measured

Ruler unit
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Basic DAQ: periodic trigger

ADC CardT sensor CPU
   Physical View

Processing

ADC

disk

● System clearly limited by the 
time t to process an “event”
– ADC conversion + 

CPU processing + 
Storage 

● The DAQ maximum sustainable 
rate is simply the inverse of t, e.g.: 
– E.g.: t = 1 ms  ® R = 1/t = 1 kHz

t 
=

 1
 m

s

TRIGGER

disk



Mauro.Villa@unibo.it Intro to DAQ 29

Basic DAQ: “real” trigger

Processing

ADC

disk

● Events asynchronous and 
unpredictable
– E.g.: beta decay studies

● A physics trigger is needed
– Discriminator: generates an 

output digital signal if amplitude 
of the input pulse is greater 
than a given threshold

● NB: delay introduced 
to compensate for the 
trigger latency 
– Signal split in trigger and data paths 

start

interrupt

delay

TRIGGER

discriminator

t 
=

 1
 m

s

noprint
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Discriminator
● Discriminator: 

– generates a digital output signal 
– if the amplitude of the input pulse 

is greater than a given threshold

threshold
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Basic DAQ: “real” trigger

Processing

ADC

disk

● Events asynchronous and 
unpredictable
– E.g.: beta decay studies

● A physics trigger is needed
– Discriminator: generates an 

output digital signal if amplitude 
of the input pulse is greater 
than a given threshold

● NB: delay introduced 
to compensate for the 
trigger latency 
– Signal split in trigger and data paths 

start

interrupt

delay

TRIGGER

discriminator

t 
=

 1
 m

s

Data path

Trigger path
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● Stochastic process
– Fluctuations in time between events

● Let's assume for example
– physics rate f = 1 kHz, i.e. l = 1 ms 
– and, as before, t = 1 ms

Basic DAQ: “real” trigger

Processing

ADC

disk

start

interrupt

delay

TRIGGER

t 
=

 1
 m

sProbability of time (in ms) 
between events for average 
decay rate of f=1kHz → l=1ms

Probability of time (in ms) 
between events for average 
decay rate of f=1kHz → l=1ms

noprint
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noprint

Probability of time (in ms) 
between events for average 
decay rate of f=1kHz → l=1ms
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● Stochastic process
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● Stochastic process
– Fluctuations in time between events

● Let's assume for example
– physics rate f = 1 kHz, i.e. l = 1 ms 
– and, as before, t = 1 ms

Basic DAQ: “real” trigger

Processing

ADC

disk

start

interrupt

delay

TRIGGER
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=
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sProbability of time (in ms) 
between events for average 
decay rate of f=1kHz → l=1ms

Probability of time (in ms) 
between events for average 
decay rate of f=1kHz → l=1ms

Probability of time (in ms) 
between events for average 
decay rate of f=1kHz → l=1msWhat if a trigger is 

created when the 
system is busy?
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● If a new trigger arrives when 
the system is still processing 
the previous event
– The processing of the previous 

event can be screwed up

System still processing ...

Probability of time (in ms) 
between events for average 
decay rate of f=1kHz → l=1ms

Probability of time (in ms) 
between events for average 
decay rate of f=1kHz → l=1ms

Probability of time (in ms) 
between events for average 
decay rate of f=1kHz → l=1msWhat if a trigger is 

created when the 
system is busy?

Processing

ADC

disk

start

interrupt

delay

TRIGGER

t 
=

 1
 m

s
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Pause to regroup
● For stochastic processes, our trigger and daq 

system needs to be able to:
– Determine if there is an “event” (trigger)
– Process and store the data from the event (daq)
– Have a feedback mechanism,

to know if the data 
processing pipeline 
is free to process 
a new event:
busy logic
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ν= f exp ( - f τ )

Two detector models
● Paralyzable vs non paralyzable detectors

paralyzable

non-paralyzable

ν

f

All detectors we will be dealing with will be of the type non-paralyzable
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Busy logic

 

 

ADC

disk

t 
=

 1
 m

s

TRIGGER

delay

f = 1 kHz
l = 1 ms 

Processing
interrupt

start

 

● The busy logic 
avoids triggers while 
the system is busy in 
processing

● A minimal busy 
logic can be 
implemented with 
– an AND gate 
– a NOT gate
– a flip-flop (flip-flop)

noprint
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Busy logic
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ProcessingCLEAR
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● The busy logic 
avoids triggers while 
the system is busy in 
processing

● A minimal busy 
logic can be 
implemented with 
– an AND gate 
– a NOT gate
– a flip-flop
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Busy logic : nomenclature
Same concepts:

● BUSY: refers to the system (or a subsystem) that is processing a 
(trigger) signal and cannot accept other signals

● INHIBIT: refers to the trigger (or the DAQ) that cannot be raised 
since the system is not free

● VETO: refers to a condition that prevents the generation of 
another trigger  

Contrary:

● ENABLE: refers to a condition that allows the generation of a 
trigger

For all practical purposes: 

● BUSY = INHIBIT = VETO =  .not. ENABLE 
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Busy logic
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ProcessingCLEAR
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Q
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ready
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● The busy logic avoids 
triggers while the system is 
busy in processing

This is an ENABLE signal:
It enables a trigger to pass
through the AND gate

Trigger Candidate
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Busy logic
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● The busy logic avoids 
triggers while the system is 
busy in processing

This is the BUSY signal

This is an ENABLE signal:
It enables a trigger to pass
through the AND gate

Trigger Candidate

Trigger
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Flip Flop 1/5
● Flip-flop: two NOR gates:  .NOT. (a.OR.b)   

– a bistable circuit that changes state (Q) by signals 
applied to the control inputs  (SET, CLEAR)

● Before: stable state, Q up and Q down 

1

0
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Flip Flop 2/5
● Flip-flop: two NOR gates:  .NOT. (a.OR.b)  

– a bistable circuit that changes state (Q) by signals 
applied to the control inputs  (SET, CLEAR)

● At some point, signal injected in R

1

0
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Flip Flop 3/5
● Flip-flop 

– a bistable circuit that changes state (Q) by signals 
applied to the control inputs  (SET, CLEAR)

● At some point, signal injected in R
– Q switched down and the feedback travels to S

1

0
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Flip Flop 4/5
● Flip-flop 

– a bistable circuit that changes state (Q) by signals 
applied to the control inputs  (SET, CLEAR)

● At some point, signal injected in R
– Q becomes up and the feedback travels to R

1

0
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Flip Flop 5/5
● Flip-flop 

– a bistable circuit that changes state (Q) by signals 
applied to the control inputs  (SET, CLEAR)

● After: stable state, Q down and Q up:
– End of pulse

1

0
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Flip Flop Truth table
● Flip-flop 

a bistable circuit that changes state (Q) by signals 
applied to the control inputs  (S=SET, R=CLEAR, RESET)

1

0

Q out     S=0    S=1

R=0  Previous Q     1

R=1      0 undefined



Mauro.Villa@unibo.it Intro to DAQ 51

 

 

ADC

disk

t 
=

 1
 m

s

TRIGGER

delay

f = 1 kHz
l = 1 ms 

NOT

AND

BUSY
LOGIC

ProcessingCLEAR

SET

flip-flop

ready

start

 

1

0
Q

● Start of run
– the flip-flop output 

is down (ground 
state) 

– via the NOT, one 
of the port of the 
AND gate is set to 
up (opened) 

● i.e. system ready 
for new triggers

Busy logic

Level 0:
The system is NOT BUSY

Level 1:
The trigger is 
ENABLED
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● If a trigger arrives, the 
signal finds the AND 
gate open, so:
– The ADC is started
– The processing is started
– The flip-flop is flipped
– One of the AND inputs is 

now steadily down 
(closed)

● Any new trigger is 
inhibited by the AND 
gate (busy)

noprint

Busy logic
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(closed)

● Any new trigger is 
inhibited by the AND 
gate (busy)

noprint

Busy logic
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Busy logic
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● If a trigger arrives, the 
signal finds the AND 
gate open, so:
– The ADC is started
– The processing is started
– The flip-flop is flipped
– One of the AND inputs is 

now steadily down 
(closed)

● Any new trigger is 
inhibited by the AND 
gate (busy)

noprint
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Busy logic
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● If a trigger arrives, the 
signal finds the AND 
gate open, so:
– The ADC is started
– The processing is started
– The flip-flop is flipped
– One of the AND inputs is 

now steadily down 
(closed)

● Any new trigger is 
inhibited by the AND 
gate (busy)
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Busy logic
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delay
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ProcessingCLEAR

SET
Q

flip-flop

ready
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0

1

● At the end of 
processing a ready 
signal is sent to the flip-
flop
– The flip-flop flips again
– The gate is now opened
– The system is ready to 

accept a new trigger 

noprint
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Busy logic
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0

● At the end of processing 
a ready signal is sent to 
the flip-flop
– The flip-flop flips again
– The gate is now opened
– The system is ready to 

accept a new trigger

● i.e. busy logic avoids 
triggers while daq 
is busy in processing
– New triggers do not 

interfere w/ previous data 
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Deadtime and efficiency
● So the busy 

mechanism protects
our electronics from
unwanted triggers
– New signals are 

accepted only when 
the system in ready
to process them

● Which (average) DAQ rate can we achieve now?
– How much we lose with the busy logic? 
– Reminder: with a clock trigger and t = 1 ms the limit 

was 1 kHz 
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Deadtime and efficiency
● Definitions 

– f: average rate of 
physics (input)

– n: average rate of 
DAQ (output)

– t: deadtime, needed
to process an event, 
without being able to handle other triggers

– probabilities: P[busy] = n t;   P[free] = 1 - n t

● Therefore:

noprint
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● Definitions 
– f: average rate of 
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Deadtime and efficiency
noprint
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● Definitions 
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Deadtime and efficiency
● Definitions 

– f: average rate of 
physics (input)

– n: average rate of 
DAQ (output)

– t: deadtime, needed
to process an event, 
without being able to handle other triggers

– probabilities: P[busy] = n t;   P[free] = 1 - n t

● Therefore:
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Deadtime and efficiency
● Due to stochastic fluctuations 

– DAQ rate always < physics rate

– Efficiency always < 100% 

● So, in our specific example
– Physics rate 1 kHz
– Deadtime 1 ms

ϵ=
N saved

N tot
=

1
1+f τ

< 100 %

f =1kHz
τ  =1ms

→ ν  =500Hz
ϵ  =50 %

ν = f
1+f τ

< f

noprint
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Deadtime and efficiency
● Due to stochastic fluctuations 

– DAQ rate always < physics rate

– Efficiency always < 100% 

● So, in our specific example
– Physics rate 1 kHz
– Deadtime 1 ms

ϵ=
N saved

N tot
=

1
1+f τ

< 100 %

f =1kHz
τ  =1ms

→ ν  =500Hz
ϵ  =50 %

ν = f
1+f τ

< f

noprint
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Deadtime and efficiency

ϵ=
N saved

N tot

=
1

1+ f τ

ν=
f

1+ f τ

● In order to obtain e~100% ( i.e.: n~f )  ® ft << 1 ® t << l 
– E.g.: e~99% for f = 1 kHz  ®  t < 0.01 ms ® 1/t > 100 kHz
– To cope with the input signal fluctuations, 

we have to over-design our DAQ system by a factor 100! 

● How can we mitigate this effect?

noprint
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Deadtime and efficiency

ϵ=
N saved

N tot

=
1

1+ f τ

ν=
f

1+ f τ

● In order to obtain e~100% ( i.e.: n~f )  ® ft << 1 ® t << l 
– E.g.: e~99% for f = 1 kHz  ®  t < 0.01 ms ® 1/t > 100 kHz
– To cope with the input signal fluctuations, 

we have to over-design our DAQ system by a factor 100! 

● How can we mitigate this effect?

noprint
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Deadtime and efficiency

ν=
f

1+ f τ

● In order to obtain e~100% ( i.e.: n~f )  ® ft << 1 ® t << l 
– E.g.: e~99% for f = 1 kHz  ®  t < 0.01 ms ® 1/t > 100 kHz
– To cope with the input signal fluctuations, 

we have to over-design our DAQ system by a factor 100! 

● How can we mitigate this effect?
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Length of the BUSY
● Lesson from Geiger-Muller counter

Detector deadtime: no 2nd signal period

Resolving time: minimal time between 
two pulses

Recovery time: time after which the 
detector becomes fully efficient

BUSY length: depends on the 
application, but it is better to have it 
greater than the detector recovery time, 
so that all measurements are taken in the 
same detector conditions
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Live time / total time
● For cross section measurements you need to 

know the “live” beam intensity (used beam). 
This is the beam intensity when the trigger is 
enabled.

● Total time (Ttot): time elapsed from the first 
enable of the trigger to the stop of the DAQ

● Live time (Tlive): sum of the periods where the 
trigger is enabled

For stable beams I live= I beam
T live
T tot
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Decision time
● What can we do to improve the efficiency of the 

system?
● Very low dead time: is expensive!
● Shortest possible busy: efficiencies not under 

control

DAQ aims to take 
data in a controlled 
fashion

(money & efficiency)
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De-randomization
● What if we were able to make 

the system more 
deterministic and less 
dependent on the arrival time 
of our signals?
– Then we could ensure that 

events don’t arrive when the 
system is busy

– This is called de-randomization

● How it can be achieved? 
– by buffering the data (having a 

holding queue where we can 
slot it up to be processed)

Inter-arrival 
time distribution

ms

ms

noprint

Data access 
time distribution
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● What if we were able to make 
the system more 
deterministic and less 
dependent on the arrival time 
of our signals?
– Then we could ensure that 

events don’t arrive when the 
system is busy

– This is called de-randomization

● How it can be achieved? 
– by buffering the data (having a 

holding queue where we can 
slot it up to be processed)

De-randomization
Inter-arrival 
time distribution

ms

ms

Data access 
time distribution

FIFO

l(ms)  f (Hz)

t (ms)  n (Hz)
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FIFOs, Circular buffers, deque
● Same concept with different names
● FIFO: First In, First Out
● FIXED storage area, with a writing and a reading 

pointer and control signals (empty, full, almost full)

C++ stl sequence container:
std::deque<int32_t> myCircularBuffer(1000);

FIFO:

anItem= deque.pop_front();

deque.push_back(anItem);



Mauro.Villa@unibo.it Intro to DAQ 75

Queuing theory

● Efficiency vs traffic intensity (r = t / l) for different queue depths
– r > 1: the system is overloaded (t > l)

– r << 1: the output is over-designed (t << l)
– r ~ 1: using a queue, high efficiency obtained even w/ moderate depth

● Analytic calculation possible for very simple systems only
– Otherwise MonteCarlo simulation is required 

l(ms),  f (Hz)

t (ms),  n (Hz)

ms

ms

Inter-arrival time 
distribution

access time 
distribution

FIFO

r = t / l

noprint
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Queuing theory

● Efficiency vs traffic intensity (r = t / l) for different queue depths
– r > 1: the system is overloaded (t > l)

– r << 1: the output is over-designed (t << l)
– r ~ 1: using a queue, high efficiency obtained even w/ moderate depth

● Analytic calculation possible for very simple systems only
– Otherwise MonteCarlo simulation is required 

l(ms),  f (Hz)

t (ms),  n (Hz)
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Queuing theory

● Efficiency vs traffic intensity (r = t / l) for different queue depths
– r > 1: the system is overloaded (t > l)

– r << 1: the output is over-designed (t << l)
– r ~ 1: using a queue, high efficiency obtained even w/ moderate depth

● Analytic calculation possible for very simple systems only
– Otherwise MonteCarlo simulation is required 
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t (ms),  n (Hz)

ms

ms

Inter-arrival time 
distribution

access time 
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FIFO

r = t / l
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Queuing theory

● Efficiency vs traffic intensity (r = t / l) for different queue depths
– r > 1: the system is overloaded (t > l)

– r << 1: the output is over-designed (t << l)
– r ~ 1: using a queue, high efficiency obtained even w/ moderate depth

● Analytic calculation possible for very simple systems only
– Otherwise MonteCarlo simulation is required 
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Queuing theory

● Efficiency vs traffic intensity (r = t / l) for different queue depths
– r > 1: the system is overloaded (t > l)

– r << 1: the output is over-designed (t << l)
– r ~ 1: using a queue, high efficiency obtained even w/ moderate depth

● Analytic calculation possible for very simple systems only
– Otherwise MonteCarlo simulation is required 

l(ms),  f (Hz)

t (ms),  n (Hz)

ms

ms

Inter-arrival time 
distribution

access time 
distribution

FIFO

r = t / l



Mauro.Villa@unibo.it Intro to DAQ 81

De-randomization

 

 

ADC

disk

t 
=

 1
 m

s

TRIGGER

delay

● Input fluctuations can be 
absorbed and smoothed by 
a queue 
– A FIFO can provide a ~steady 

and de-randomized 
output rate

– The effect of the queue 
depends on its depth  

● Busy is now defined by 
the buffer occupancy
– Processor pulls data from 

the buffer at fixed rate, 
separating the event receiving 
and data processing steps

f = 1 kHz
l = 1 ms 

NOT

AND

BUSY
LOGIC

ProcessingCLEAR

SET
Q

interrupt

ready

start

 

noprint
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De-randomization

 

 

ADC

disk

t 
=

 1
 m

s

TRIGGER

delay

f = 1 kHz
l = 1 ms ● Input fluctuations can be 

absorbed and smoothed by 
a queue 
– A FIFO can provide a ~steady 

and de-randomized 
output rate

– The effect of the queue 
depends on its depth  

● Busy is now defined by 
the buffer occupancy
– Processor pulls data from 

the buffer at fixed rate, 
separating the event receiving 
and data processing steps

NOT

AND

BUSY
LOGIC

Processing

start

data
ready

busy (full) FIFO

noprint



Mauro.Villa@unibo.it Intro to DAQ 83

De-randomization

 

 

ADC

disk

t 
=

 1
 m

s

TRIGGER

delay

f = 1 kHz
l = 1 ms 

NOT

AND

BUSY
LOGIC

Processing

start

data
ready

busy (full) FIFO

● Input fluctuations can be 
absorbed and smoothed by 
a queue 
– A FIFO can provide a ~steady 

and de-randomized 
output rate

– The effect of the queue 
depends on its depth  

● Busy is now defined by 
the buffer occupancy
– Processor pulls data from 

the buffer at fixed rate, 
separating the event receiving 
and data processing steps
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De-randomization summary

 

 

ADC

disk

TRIGGER

f = 1 kHz
l = 1 ms 

NOT

AND

BUSY
LOGIC

Processing

start

data
ready

busy (full) FIFO

● The FIFO decouples the 
low latency front-end from 
the data processing
– Minimize the amount of 

“unnecessary” fast components

● ~100% efficiency w/ minimal 
deadtime achievable if
– ADC can operate at rate >> f
– Data processing and storing 

operate at a rate ~ f 

● Could the delay be replaced 
with a “FIFO”?
– Analog pipelines, heavily used in 

LHC DAQs

delay

t 
=

 1
 m

s

noprint
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De-randomization summary

 

 

ADC

disk

TRIGGER

p
i
p
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l
i
n
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f = 1 kHz
l = 1 ms 

NOT

AND

BUSY
LOGIC

Processing

start

data
ready

busy (full) FIFO

● The FIFO decouples the 
low latency front-end from 
the data processing
– Minimize the amount of 

“unnecessary” fast components

● ~100% efficiency w/ minimal 
deadtime achievable if
– ADC can operate at rate >> f
– Data processing and storing 

operate at a rate ~ f 

● Could the delay be replaced 
with a “FIFO”?
– Analog pipelines, heavily used in 

LHC DAQs t 
=

 1
 m

s
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Collider setup

 

 

ADC

disk

TRIGGER

● Do we need de-randomization 
buffers also in collider setups?
– Particle collisions are 

synchronous
– But the time distribution of 

triggers is random: good events 
are unpredictable

● De-randomization still needed
● More complex busy logic to 

protect buffers and detectors
– Eg: accept n events every m 

bunch crossings
– Eg: prevent some 

dangerous trigger patterns 

BUSY
LOGIC

Processing

start

data
ready

busy (full) FIFO

BX

TIMING

AND

NOT abort

p
i
p
e
l
i
n
e

noprint
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Collider setup
● Do we need de-randomization 

buffers also in collider setups?
– Particle collisions are 

synchronous
– But the time distribution of 

triggers is random: good events 
are unpredictable

● De-randomization still needed
● More complex busy logic to 
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bunch crossings
– Eg: prevent some 
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● Introduction
– What is DAQ?
– Overall framework

● Basic DAQ concepts
– Digitization, Latency
– Deadtime, Busy, Backpressure
– De-randomization

●  Scaling up
– Readout and Event Building
– Buses vs Network

● Data encoding

Outline
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Adding more channels

storage

Processing

ADC

TRIGGER
1 channel

● Adding more channels requires a hierarchical structure 
committed to the data handling and conveyance

Front-End

Readout

Event Building

Event Filtering

Event Logging

data extraction
data formatting
data buffering

event assembly
event buffering

event rejection
event buffering

file storage
file buffering

data digitization
data buffering

noprint
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Adding more channels
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ADC ADCADCADCADCADC

TRIGGER
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● Adding more channels requires a hierarchical structure 
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Adding more channels
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● Adding more channels requires a hierarchical structure 
committed to the data handling and conveyance
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Adding more channels

storage

Processing

Processing

Data Collection

ADCADCADC

Processing Processing

ADC ADCADCADCADCADC

TRIGGER

Front-End

Readout

Event Building

Event Filtering

Event Logging

N channels N channels N channels

data extraction
data formatting
data buffering

event assembly
event buffering

event rejection
event buffering

file storage
file buffering

● Buffering usually needed at every level
– DAQ can be seen as a multi level buffering system 

data digitization
data buffering
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Backpressure

storage

Processing

Processing

Data Collection

ADCADCADC

Processing Processing

ADC ADCADCADCADCADC

TRIGGER
N channels N channels N channels

● If a system/buffer gets saturated 
– the “pressure” is propagated upstream (back-pressure)
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ADC ADCADCADCADCADC
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– the “pressure” is propagated upstream (back-pressure)
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Backpressure

storage

Processing

Processing
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ADCADCADC

Processing Processing

ADC ADCADCADCADCADC

TRIGGER
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● If a system/buffer gets saturated 
– the “pressure” is propagated upstream (back-pressure)



Mauro.Villa@unibo.it Intro to DAQ 99

Backpressure

storage

Processing

Processing

Data Collection

ADCADCADC

Processing Processing

ADC ADCADCADCADCADC

TRIGGER
N channels N channels N channels

● If a system/buffer gets saturated 
– the “pressure” is propagated upstream (back-pressure)

● Up to exert busy to the 
trigger system

● Debugging: where is 
the source of 
backpressure?
– follow the buffers 

occupancy via the 
monitoring system 
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Backpressure

storage

Processing

Processing

Data Collection

ADCADCADC

Processing Processing

ADC ADCADCADCADCADC

TRIGGER
N channels N channels N channels

● If a system/buffer gets saturated 
– the “pressure” is propagated upstream (back-pressure)

In this case?
Who is the guilty?

noprint

● Up to exert busy to the 
trigger system

● Debugging: where is 
the source of 
backpressure?
– follow the buffers 

occupancy via the 
monitoring system 
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Backpressure

storage

Processing

Processing

Data Collection

ADCADCADC

Processing Processing

ADC ADCADCADCADCADC

TRIGGER
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● If a system/buffer gets saturated 
– the “pressure” is propagated upstream (back-pressure)

Backpressure
from processing

● Up to exert busy to the 
trigger system

● Debugging: where is 
the source of 
backpressure?
– follow the buffers 

occupancy via the 
monitoring system 
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Building blocks

storage

Processing

Data Collection

ADCADCADC

Processing Processing

ADC ADCADCADCADCADC

TRIGGER
N channels N channels N channels

● Reading out data or building events out 
of many channels requires many components

● In the design of our 
hierarchical data-collection 
system, we have better 
define “building blocks”
– Readout crates
– HLT racks
– event building groups
– daq slices 

Farm Farm Farm….
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Front End electronics
noprint
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Front-end electronics (WaveDAQ)

Shift RegisterClock

IN

Out

Storage
capacitors

Inverter “Domino” ring chain0.2-2 ns

FADC 
33 MHz

Analog pipeline
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Event Builder PC Global Trigger

DATA and TRIGGER paths
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Readout Boards (Counting Room)
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Building blocks
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● Reading out data or building events out 
of many channels requires many components

● In the design of our 
hierarchical data-collection 
system, we have better 
define “building blocks”
– Readout crates
– HLT racks
– event building groups
– daq slices 

Farm Farm Farm….
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ATLAS Farm (@surface)
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Building blocks

storage

Processing

Data Collection

ADCADCADC

Processing Processing

ADC ADCADCADCADCADC

TRIGGER
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● Reading out data or building events out 
of many channels requires many components

● In the design of our 
hierarchical data-collection 
system, we have better 
define “building blocks”
– Readout crates
– HLT racks
– event building groups
– daq slices 

Farm Farm Farm….
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Readout Topology
● How to organize the interconnections inside the 

building blocks and between building blocks?
– How to connect data sources and data destinations?

– Two main classes: bus or network

data sources

data processors

network

bus

bus bus

noprint
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Readout Topology

data sources

data processors

network

bus

bus bus

● How to organize the interconnections inside the 
building blocks and between building blocks?
– How to connect data sources and data destinations?

– Two main classes: bus or network
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Buses
● Devices connected via a shared bus

– Bus → group of electrical lines

● Sharing implies arbitration
– Devices can be master or slave
– Devices can be addresses (uniquely identified) on the bus

● E.g.: SCSI, Parallel ATA, VME, PCI …
– local, external, crate, long distance, ...

Select Line

Device
1

Device
2

Device
3

Device
4

Data Lines

MASTERSLAVE
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Bus facts
● Simple :-)

– Fixed number of lines (bus-width)
– Devices have to follow well defined interfaces

● Mechanical, electrical, communication, ...

● Scalability issues :-(
– Bus bandwidth is shared among all the devices
– Maximum bus width is limited
– Maximum number of devices depends on bus length
– Maximum bus frequency is inversely proportional to 

the bus length
– On the long term, other “effects” might limit the 

scalability of your system
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Bus facts
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– Fixed number of lines (bus-width)
– Devices have to follow well defined interfaces

● Mechanical, electrical, communication, ...

● Scalability issues :-(
– Bus bandwidth is shared among all the devices
– Maximum bus width is limited
– Maximum bus frequency is inversely proportional to 

the bus length
– Maximum number of devices depends on bus length
– On the long term, other “effects” might limit the 

scalability of your systemOn the long term, other “effects” might 
limit the scalability of your system
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Network
● All devices are equal

– They communicate directly with 
each other via messages

– No arbitration, simultaneous 
communications

● Eg: Telephone, Ethernet, Infiniband, …



Mauro.Villa@unibo.it Intro to DAQ 116

Network
● In switched networks, 

switches move 
messages between 
sources and 
destinations
– Find the right path

● How congestions (two 
messages with the 
same destination at the 
same time) are 
handled?
– The key is .... buffering
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Network
● Networks scale well (and allow redundancy) 

– They are the backbones of LHC DAQ systems

●  
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DAQ concepts
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● Study the trigger properties
– Periodic or stochastic, continuous or bunched

● Consider the needed efficiency
– Good to keep operation margins, but avoid over-sizing

● Identify fluctuation sources and size adequate 
buffering mechanisms
– NB: there are many source of fluctuations: 

multi-threaded sw, network,  ...

● Adequate buffer is not a huge buffer
– Makes your system less stable and 

responsive, prone to  oscillations 
– Overall it decreases reliability

DAQ Mentoring
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● Keep it simple: keep under control the number of free 
parameters without losing flexibility
– Have you ever heard about SUSY phase-space scans? Do 

you really want something like that for your DAQ system?

● Problems require perseverance
– Be careful, a rare little glitch in your 

DAQ might be the symptom of a 
major issue with your data

● In any case, …

    
     and enjoy the school

DAQ Mentoring
noprint
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DAQ Mentoring
● Keep it simple: keep under control the number of free 

parameters without losing flexibility
– Have you ever heard about SUSY phase-space scans? Do 

you really want something like that for your DAQ system?

● Problems require perseverance
– Be careful, a rare little glitch in your 

DAQ might be the symptom of a 
major issue with your data

● In any case, …

    
     and enjoy the DAQ
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