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● How does LISA work? 
Measurement concept and sensitivity limits

● What has been already tested? 
LISA Pathfinder and its free-falling test masses with local interferometric 
tracking

● What are we working on? 
Long arm interferometry and GW data analysis in a signal dominated 
environment
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LISA: Laser Interferometer Space Antenna

• ESA large scale mission L3, aiming for launch in 2034(5) + 
contributions from NASA and JAXA

• Proposed in 2017 after success of technology demonstrator 
and geodesic explorer LISA Pathfinder

4

LISA Proposal (2017)

• 4 year nominal mission duration (+ 6y extension)
• 100 μHz – 1 Hz GW observation band
• extended band down to 20 μHz
• possible extension to «nominal» mission under study
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LISA: Laser Interferometer Space Antenna
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LISA: Laser Interferometer Space Antenna

• free-falling TM, no suspension
○ μm/s2 orbital tidal accelerations vs. fm/s2 GW 
○ spacecraft drag-free control

• open-loop interferometer
○ Δv 10 m/s  🡪 10 MHz fringe rates

• very unequal arm interferometer (ΔL ≃ 104 km)
• weak light (100 pW)

○ single arm transponders (no direct reflection)
○ no 2-arm light combination
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LISA: Laser Interferometer Space Antenna
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mission lead and system prime
• 3 spacecrafts + (possible) payload items
• launch, transfer, communications, 

propulsion, SC control, etc
• mission and science operations
• guarantees mission performance

instrument notional designs [ESA internal study, 2017]
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The scientific payload: Moving Optical Sub-Assembly 
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Optical metrology system 
Optical bench

Telescope
 
 + phasemeter
 + laser

Gravitational reference system 
GRS head
+ electronics
+ UV light source

instrument notional designs [ESA internal study, 2017]

2 MOSAs per spacecraft
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Free-falling observers O1 and O2 exchanging light beams (T=8.3s travel time)
• O1 emits beam with frequency ν1E

• O2 receives, measures phase and sends back phase-coherent copy
• O1 interferes returning beam with local beam, measures beat frequency Δν

GW observation mechanism
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(time delayed Δg)
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LISA measurement scheme
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+ reference IFO for reference phase in adjacent arms of same spacecraft

Measurement of acceleration between free-falling TM 2.5 million km apart is 
split in multiple segments
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LISA sensitivity
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High freq limit:
IFO readout noise,
10 pm Hz-1/2

Low freq limit:
TM acceleration noise,
3 fm s-2Hz-1/2

Low Frequency limit: spurious antenna tidal deformation (stray forces)
High Frequency limit: interferometer fluctuations (shot noise, etc)



Eleonora Castelli Experimental challenges for space-based GW detectors SIGRAV ConferenceEleonora Castelli Experimental challenges for space-based GW detectors SIGRAV Conference

Acceleration noise

3 fm/s 2/Hz 1/2

IFO noise
15 pm/s2

More massive BH
Lighter BH, 

multiband w/ LIGO

normal incidence, ideal polarization

Why 2.5 million km arms?
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LISA 2.5 million km
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LISA 2.5 million km
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Acceleration noise

3 fm/s 2/Hz 1/2

IFO noise
15 pm/s2

More massive BH
Lighter BH, 

multiband w/ LIGO

 4.5 pm Hz-1/2

(PR ≈500 pW)

Shot noise limit

LISA 1 million km

LISA 5 million km

0.7 pm Hz-1/2

shot noise

P
R  ≈ 100 pW

normal incidence, ideal polarization

Why 2.5 million km arms?
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LISA 2.5 million km
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LISA Pathfinder: ESA Geodesic Explorer
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LPF-tested hardware
• free-falling TM
• GRS hardware for LISA
• local TM interferometric readout
• drag-free control with cold gas and 

colloidal thrusters
• SC gravitational balancing
• TM charging and discharging
• space and SC magnetic, thermal 

environments
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LISA Pathfinder: ESA Geodesic Explorer
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LISA Pathfinder: ESA Geodesic Explorer
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LISA Technology Package
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LISA Pathfinder: ESA Geodesic Explorer
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LISA Technology Package

● Pt/Au 2kg Test masses
● Electrode Housing
● Vacuum enclosure
● Caging mechanism
● UV light charge and discharge mechanism
● Optical Bench and interferometer

How do you do improve geodesic motion by 4 
orders of magnitude? 
(from pico-g Hz-1/2 to sub-femto-g Hz-1/2)

• heavy non-magnetic TM
• 3-4 mm gaps with no contacts
• AC-carrier force actuation
• vent payload to space (< 10 μPa)

Which was difficult because of:
• tough caging
• no discharge wire → UV discharge system
• need IFO readout for TM position 
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LPF differential acceleration noise performance
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Castelli, PHD Thesis, 2020

LPF differential acceleration noise budget

• LISA acceleration noise goal has been demonstrated
• Low frequency noise still not fully understood → work in progress

26
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Preliminary

plot courtesy of Lorenzo Sala
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Interferometer performance

● Dominated by phase meter noise (mostly understood) 

● Demonstration of a high-performance local IFO in space

From LPF to LISA instrument performance

28

Requirement

Demonstrated
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x Increased inside (tight) GRS 
due to correlated collisions

Preliminary

T low
ered by 10

K

Interferometer performance

● Dominated by phase meter noise (mostly understood) 

● Demonstration of a high-performance local IFO in space

Brownian noise from residual gas

• Decays over time (1/t) as GRS vents to space
• Noise power cut in half when cooled by 10 K🡪 1 μPa of water
• Visible in thermal gradient experiments (radiometric effect)
Below LISA requirement!

From LPF to LISA instrument performance

29
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Net charge rate: +25 e/s

Effective shot noise rate:1200 e/s

Interferometer performance

● Dominated by phase meter noise (mostly understood) 

● Demonstration of a high-performance local IFO in space

Brownian noise from residual gas

• Decays over time (1/t) as GRS vents to space
• Noise power cut in half when cooled by 10 K🡪 1 μPa of water
• Visible in thermal gradient experiments (radiometric effect)
Below LISA requirement!

TM charging steady and stochastic
● Cosmic ray + solar particle charge TM
● Mix with stray E-fields to give forces (and noise)

● Detect stochastic cosmic ray charge noise
● Requires balancing stray voltages around TM to 10 mV

From LPF to LISA instrument performance

30

Invitation to Tender issued by ESA: 
Won by OHB + UniUrbino + UniTrento 
to perform charge simulations for LISA
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Actuation noise
Noise in Δg, Δγφ increases with larger (balancing) forces

● actuator stability at 50 ppm/Hz1/2  level at 100 μHz
● as measured on ground

Actuation noise observed, well modeled
● not dominant in LPF thanks to grav balance
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● How does LISA work? 
Measurement concept and sensitivity limits

● What has been already tested? 
LISA Pathfinder and its free-falling test masses with local interferometric 
tracking

● What are we working on? 
Long arm interferometry and GW data analysis in a signal dominated 
environment
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LISA long arm interferometry
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SMBH waveform courtesy of Antoine Petiteau

Two 105 solar mass Black Holes at z = 5 
• nominal LISA sensitivity → SNR 1000
• 30d before merger (70 μHz – 3 mHz) → SNR 1  
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LISA long arm interferometry
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SMBH waveform courtesy of Antoine Petiteau

Two 105 solar mass Black Holes at z = 5 
• nominal LISA sensitivity → SNR 1000
• 30d before merger (70 μHz – 3 mHz) → SNR 1  

Add in LPF measured acceleration noise – SNR still > 1 
every cycle
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LISA long arm interferometry
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SMBH waveform courtesy of Antoine Petiteau

Two 105 solar mass Black Holes at z = 5 
• nominal LISA sensitivity → SNR 1000
• 30d before merger (70 μHz – 3 mHz) → SNR 1  

Add in LPF measured acceleration noise – SNR still > 1 
every cycle

Add in LISA long arm IFO noise (photon starved at 100 
pW)
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LISA long arm interferometry
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SMBH waveform courtesy of Antoine Petiteau

Two 105 solar mass Black Holes at z = 5 
• nominal LISA sensitivity → SNR 1000
• 30d before merger (70 μHz – 3 mHz) → SNR 1  

Add in LPF measured acceleration noise – SNR still > 1 
every cycle

Add in LISA long arm IFO noise (photon starved at 100 
pW)

Add in the galactic foreground of 30 million white dwarf 
binaries (0.1 – 10 mHz) 
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LISA long arm interferometry
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SMBH waveform courtesy of Antoine Petiteau

Two 105 solar mass Black Holes at z = 5 
• nominal LISA sensitivity → SNR 1000
• 30d before merger (70 μHz – 3 mHz) → SNR 1  

Add in LPF measured acceleration noise – SNR still > 1 
every cycle

Add in LISA long arm IFO noise (photon starved at 100 
pW)

Add in the galactic foreground of 30 million white dwarf 
binaries (0.1 – 10 mHz) 

Add laser frequency noise with ΔL = 30000 km in simple 
Michelson combination



Eleonora Castelli Experimental challenges for space-based GW detectors SIGRAV ConferenceEleonora Castelli Experimental challenges for space-based GW detectors SIGRAV Conference

LISA long arm interferometry
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SMBH waveform courtesy of Antoine Petiteau

Two 105 solar mass Black Holes at z = 5 
• nominal LISA sensitivity → SNR 1000
• 30d before merger (70 μHz – 3 mHz) → SNR 1  

Add in LPF measured acceleration noise – SNR still > 1 
every cycle

Add in LISA long arm IFO noise (photon starved at 100 
pW)

Add in the galactic foreground of 30 million white dwarf 
binaries (0.1 – 10 mHz) 

Add laser frequency noise with ΔL = 30000 km in simple 
Michelson combination

Simple Michelson signal recombination too noisy (107)
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LISA long interferometer: Time Delay Interferometry

LISA constellation quasi-rigid, quasi equilateral rotating 
configuration breathing due to Keplerian dynamics and Earth pull
• Δφ ~ 1 ° (telescope angle must breathe)
• ΔL ~ 30000 km (unequal arm interferometer)
• Δv ~  10 m/s  (Doppler shifts 10 MHz fringe rates)
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Beam divergence over 2.5M km:
● 2 W from 30 cm telescope 
● 500 pW received power

weak light phase-lock transponder

LISA is a weak light, open loop, unequal arm Doppler interferometer
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LISA long interferometer: Time Delay Interferometry
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LISA is a weak light, open loop, unequal arm Doppler interferometer

Classic Michelson configuration

we’d get 2 μm/Hz1/2 with a budget of 10 pm/Hz1/2 🡪 would require ΔL = 2 m 

ΔL ≈ 20000 km 

Time Delay Interferometry: Combine phase measurements retarded in time in 
such a way that laser frequency noise is killed 

Both 4-pulse roundtrip optical paths start and end in same event 
● laser frequency noise cancels out!

1

2

3

A

B
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LISA long interferometer: Time Delay Interferometry
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One-way frequency comparison

Round-trip frequency comparison

Unequal arm Michelson

TDI

TM acceleration noise

IFO noise 15 pm Hz-1/2
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Experimental steps towards LISA

● Inter-spacecraft laser interferometry at 200 pm Hz-1/2 level 

○ Demonstrated on the GRACE mission

● Phasemeter with a 1011 dynamic range to resolve GWs

○ Demonstrated on ground, need to get this in-flight

● Possible corrections to LISA phasemeter data due to SC motion

○ Translational motion ~nm Hz-½ when trying to measure pm Hz-1/2 

○ Rotational motion of the SC: alignment problem between local IFO and 

distant IFO (Tilt-To-Length mitigation to be done in software)

42

What needed now for LISA long arm interferometry?

AEI hexagon Schwarze+ PRL 2019

LONG IFO

TM IFO  
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Experimental steps towards LISA

● Test-mass release after launch 
○ need to do that slowly (v < 15μm/s)
○ perfectioned towards the end of LPF mission

● Constellation acquisition
○ find distant SC with μ−rad laser beam
○ match beam frequency and angle

43

A couple interesting engineering details

5 μrad ~200μrad



Eleonora Castelli Experimental challenges for space-based GW detectors SIGRAV ConferenceEleonora Castelli Experimental challenges for space-based GW detectors SIGRAV Conference

Experimental steps towards LISA
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Assess impact of noise artefacts which are going to be superimposed to signals
(e.g. force impulse glitches observed on LISA Pathfinder and removable after fit)

● Can we understand their physical source and eliminate them? 
● Can we discriminate at instrument level?  
● Or with TDI? [Work in progress in the LISA Data Challenges]

Instrumentalist challenge during LISA operations

Armano+ PRL 2018

Preliminary
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Thank you and remember to check lisamission.org
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