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Introduction and Motivations

I The de Sitter universe is a spacetime with positive
constant 4-curvature that is homogeneous and isotropic
in both space and time.

I It is completely characterized by only one constant H and
has as many symmetries as the flat (Minkowski)
spacetime.

I De Sitter universe plays a central role in understanding
the properties of cosmological inflation.

I Inflation is a stage of accelerated expansion of the early
Universe. The expansion is quasi-exponential, and at
lowest order it can be approximated by de Sitter space.

I The inflationary stage allows the growth of quantum
fluctuations, which are necessary to explain observed
large-scale structure of the Universe. So it is important to
study quantum field theory in de Sitter background.



Introduction and Motivations

I Scalar fields in de Sitter space are of particular
importance for understanding the period of inflation and
the growth of quantum fluctuations.

I In the massive case if m2 � H2, the leading contribution
to 〈φ2〉ren

〈φ2(~x , t)〉ren =
3H4

8π2m2
+O

((
m2/H2

)0)
,

derives entirely from the long-wavelength modes.

I When there is a self-interaction, each successive term in
the weak coupling perturbative expansion contains higher
and higher powers of H2/m2. The perturbation theory
breaks down when the value of H2/m2 overwhelms the
smallness of the coupling constant.



Introduction and Motivations

I A non-perturbative method for calculating the
expectation values of the coarse-grained theory,
containing only the long-wavelength fluctuations of a
scalar field, was proposed by Starobinsky.

I The expectation values can be determined by using a
probability distribution function that is a solution to a
simple Fokker-Planck equation.

I In this work we consider a massive scalar field with a
quartic self-interaction.

I We calculate a long-wavelength part of the two-point
function up to two-loop order using the “in-in” formalism.



Introduction and Motivations

I We compare our results with the Hartree-Fock
approximation and with the stochastic approach.

I We argue that the perturbative expression for the
two-point function can be reorganized into a sum of
exponential functions that depend on the two given
points in a de Sitter invariant way.



De Sitter Space in Flat Coordinates

We consider the de Sitter spacetime represented as an
expanding spatially flat homogeneous and isotropic universe
with the following metric

ds2 = dt2 − a2(t)(dx2 + dy 2 + dz2) ,

where the scale factor a(t) is

a(t) = eHt ,−∞ < t <∞,

and H is the Hubble constant that characterizes the rate of
expansion.



If we introduce a conformal time coordinate, given by
η(t) ≡

∫
dt a−1(t)

ds2 = a2(η)(dη2 − dx2 − dy 2 − dz2),

a(η) = − 1

Hη
, −∞ < η < 0.

Physical distances: `phys = a(η)` = −`/(Hη).

Physical energy or momentum: kphys = k/a(η) = −kHη.



Massive Scalar Field in de Sitter space

We will study a massive scalar field with a quartic
self-interaction

S =

∫
d4x
√
−g
(

1

2
gµν∂µφ∂νφ−

1

2
m2φ2 − λ

4
φ4

)
.

When λ = 0, the equation of motion for the rescaled field
χ ≡ a(η)φ is

χ′′ −∇2χ− 1

η2

(
2− m2

H2

)
χ = 0 .

We expand the field φ(~x , t) in terms of creation and
annihilation operators

φ(~x , t) =

∫
d3~k

(2π)3

{
φk(η)e i

~k·~xa~k + φ∗k(η)e−i
~k·~xa†~k

}
.



The mode functions χk ≡ a(η)φk obey the differential
equation

χ′′k + k2

[
1− 1

k2η2

(
2− m2

H2

)]
χk = 0 ,

where k = |~k |. The general solution of this equation can be
expressed as a linear combination of Hankel functions:

χk(η) =
√
−kη

[
Ak H(1)

ν (−kη) + Bk H(2)
ν (−kη)

]
,

ν =

√
9

4
− m2

H2
.

The choice of the coefficients Ak and Bk defines a vacuum
state |0〉 annihilated by a~k .

a~k |0〉 = 0 for any ~k .



If one wants to have a vacuum that in the remote past
η → −∞ (or, equivalently, for modes with very short physical
wavelength, −kHη � H) behaves like the vacuum in
Minkowski spacetime,

χk(η)→ e−ikη√
2k

,

one should choose

χk(η) = −
√
π

2

√
−ηH(1)

ν (−kη) .

Such a choice is called the Bunch-Davies vacuum. As long as
m 6= 0, this state is de Sitter invariant. If m2 � H2, then

ν ≈ 3

2
− u, with u ≡ m2

3H2
� 1 .



Perturbative calculation of the two-point correlation function

We present a perturbative calculation of the long-wavelength
part of the two-point function. There are two reasons why it is
meaningful to consider exclusively the long-wavelength modes.

The first reason is physical. The fluctuations relevant for the
formation of the observed large-scale structure of the universe
are those whose wavelength, by the end of inflation, has been
stretched to a size much larger than the Hubble horizon.

The second reason is mathematical. Calculations are much
simpler if instead of the exact modes, one uses their
long-wavelength limit. At the same time, in many cases the
results can reflect the behavior of the untruncated theory. In
the small mass limit, the long-wavelength two-point function
matches with the untruncated one for large separations and for
coinciding spacetime points.



The free two-point function in a vacuum state |0〉 is

〈φ(~x , t1)φ(~y , t2)〉λ0 ≡ 〈0|φ(~x , t1)φ(~y , t2)|0〉

=

∫
d3~k

(2π)3
φk(η1)φ∗k(η2)e i

~k·(~x−~y)

=
1

2π2

∫ ∞
0

dk k2 sin kr

kr
φk(η1)φ∗k(η2) ,

Its long-wavelength part consists of modes with physical
momenta much less than H :

k

a(η1)H
= −kη1 < ε ,

k

a(η2)H
= −kη2 < ε ,

where ε� 1. In this limit

φk(η) ≈ iH√
2

(−η)3/2(−kη)−ν =
iH√
2k3

(−kη)u.



The long-wavelength part of the two-point function is

〈φ(~x , t1)φ(~y , t2)〉λ0,L =
H2(η1η2)u

4π2

∫ −ε/ηm
0

dk

k

k2u sin(kr)

kr
,

where ηm is the earliest time that accompanies the
momentum ~k : ηm ≡ min(η1, η2). In the case of coinciding
spacetime points

〈φ2(~x , t)〉λ0,L =
H2(−η)2u

4π2

∫ −ε/η
0

dk

k1−2u =
H2

8π2

ε2u

u
.

If
exp
(
−u−1

)
� ε� 1,

then ε2u may be replaced by 1 and

〈φ2(~x , t)〉λ0,L =
H2

8π2u
=

3H4

8π2m2
.



Given two points in de Sitter space, there is a de Sitter
invariant function associated with them:

Z (X ,Y ) = −H2ηµνX
µY ν ,

where X and Y represent coordinates in five-dimensional
Minkowski embedding space with the metric
ηµν = diag(1,−1,−1,−1,−1).
In spatially flat coordinates

Z (~x1, η1; ~y , η2) =
η21 + η22 − |~x − ~y |2

2η1η2
.

If points are timelike separated, then Z > 1; if points are
lightlike separated, then Z = 1, and if points are spacelike
separated, then Z < 1.



If (~x , t1) and (~y , t2) are related in such a way that

Z > 1− 1

2ε2
,

then
−r/ηm < 1/ε .

We have

〈φ(~x , t1)φ(~y , t2)〉λ0,L =
H2

8π2u
e−uH|t1−t2| .



There are two important subcases of for which the two-point
function is given by the above expression. One is when points
(~x , t1) and (~y , t2) are timelike or lightlike separated; the other
is when these points have coinciding time coordinates and the
physical spatial distance between them satisfies
a(t)r < (εH)−1.
In the latter case, we obtain the same result as that for the
coinciding spacetime points.
This means that as far as the long-wavelength correlation
function is concerned, there is no difference between coinciding
spacetime points and points on a constant time hypersurface
that are separated by a proper distance less than (εH)−1.



Let us consider the case when

(−r/ηm) > 1/ε ,

or

Z < 1− 1

2ε2
� −1 .

It corresponds to the regime of large spacelike separation
between points. Then

〈φ(~x , t1)φ(~y , t2)〉λ0,L =
H2

8π2u

(η1η2
r 2

)u
=

H2

8π2u
e−uH(t1+t2)(rH)−2u .

In this regime the equal-time two-point function,

〈φ(~x , t)φ(~y , t)〉λ0,L =
3H4

8π2m2
(RH)−

2m2

3H2 ,

depends only on the physical spatial distance R ≡ reHt .



The exact (untruncated) two-point correlator function is
known, it is expressed through a hypergeometrical functions
and its leading in the parameter u terms give the results
coinciding with the long-wavelength correlators, presented
above for the cases of coinciding spacetime points Z = 1 and
the points separated by large timelike or spacelike intervals
|Z | � 1. Just as in flat spacetime, the expectation value of

the commutator of two fields vanishes for spacelike separated
points and is nonzero for timelike separated points.
However, for the long-wavelength fields

〈[φ(~x , t1), φ(~y , t2)]〉λ0,L = 0

both for timelike and spacelike related points. The vanishing
of this commutator indicates that the long-wavelength part of
the field in a sense behaves like a classical quantity.



Schwinger–Keldysh technique

I Schwinger-Keldysh or “in-in” or “closed time path”
formalism serves for the calculations of expectation values
of operators when only the initial state of the system is
given.

I In contrast to the “in-out” formalism there are four types
of the propagators and two types of vertices,
characterizing the quantum fields on the way forward in
time and “back in time”.

I After some calculations one remains with the integrals
including Wightman functions and theta-functions.

I Diagrams that correspond to these integrals look similar
to Feynman diagrams.



The one-loop correction to the two-point function is given by
the following diagram:

u
(~x , t1)

u"!
# 

t ′
u

(~y , t2)

Fig.1

In the case of the timelike, lightlike or small spacelike
separation between the points we have

〈φ(~x , t1)φ(~y , t2)〉λ,L

= − λH2

64π4u3

(
1 + uH |t1 − t2|

)
e−uH|t1−t2| .



In the case of coinciding spacetime points one finds

〈φ2(~x , t)〉λ,L = − 27λH8

64π4m6
.

The long-wavelength correlation function at large spacelike
separations is

〈φ(~x , t1)φ(~y , t2)〉λ,L

= − λH2

64π4u3

{
1 + u ln

(
r 2H2eH(t1+t2)

)}
e−uH(t1+t2)(rH)−2u .

The effective parameter of the perturbative expansion is not λ
but λ/u2, so the perturbation theory is valid as long as
λ� m4/H4.



To calculate the two-loop contribution to the two-point
correlator, we should consider three diagrams. First of them is
the diagram with two independent loops.

u
(~x , t1)
u��
��

t ′
u��
��

t ′′
u

(~y , t2)

Fig.2

When Z > 1− (2ε2)−1, we obtain

〈φ(~x , t1)φ(~y , t2)〉(1)
λ2,L

=
λ2H2

512π6u5

(
1 + uH |t1 − t2|+

1

2
u2H2|t1 − t2|2

)
e−uH|t1−t2| ,

which for coinciding spacetime points becomes

〈φ2(~x , t)〉(1)
λ2,L =

243λ2H12

512π6m10
.



In Z < 1− (2ε2)−1 regime, we have

〈φ(~x , t1)φ(~y , t2)〉(1)
λ2,L

=
λ2H2

512π6u5

{
1 + u ln

(
r 2H2eH(t1+t2)

)
+

1

2
u2 ln2

(
r 2H2eH(t1+t2)

)}
e−uH(t1+t2)(rH)−2u .



The second diagram can be called “snowman”.

u
(~x , t1)
u
t ′
��
��u
t ′′
��
��

u
(~y , t2)

Fig. 3

In the case Z > 1− (2ε2)−1 it gives

〈φ(~x , t1)φ(~y , t2)〉(2)
λ2,L =

λ2H2

512π6u5

(
1 + uH |t1 − t2|

)
e−uH|t1−t2| ,

which for coinciding spacetime points reduces to

〈φ2(~x , t)〉(2)
λ2,L =

243λ2H12

512π6m10
.



When Z < 1− (2ε2)−1, we obtain

〈φ(~x , t1)φ(~y , t2)〉(2)
λ2,L

=
λ2H2

512π6u5

{
1 + u ln

(
r 2H2eH(t1+t2)

)}
e−uH(t1+t2)(rH)−2u .



The last two-loop diagram is “sunset”.

u
(~x , t1)
u

t ′
u
t ′′
u

(~y , t2)&%
'$

Fig. 4

For Z > 1− (2ε2)−1, it gives

〈φ(~x , t1)φ(~y , t2)〉(3)
λ2,L =

λ2H2

1024π6u5

(
1 + 2uH |t1 − t2|

)
e−uH|t1−t2|

+
λ2H2

3072π6u5
e−3uH|t1−t2| .



For coinciding spacetime points, it reduces to

〈φ2(~x , t)〉(3)
λ2,L =

81λ2H12

256π6m10
.

In the opposite regime, Z < 1− (2ε2)−1, we obtain

〈φ(~x , t1)φ(~y , t2)〉(3)
λ2,L

=
λ2H2

1024π6u5

{
1 + 2u ln

(
r 2H2eH(t1+t2)

)}
e−uH(t1+t2)(rH)−2u

+
λ2H2

3072π6u5
e−3uH(t1+t2)(rH)−6u .



Comparison with the Hartree-Fock approximation and with the
stochastic approach

Starting with the Klein-Gordon equation and using the
Hartree-Fock (Gaussian) approximation

〈φ4〉 = 3〈φ2〉2,

we arrive to the following equation for the two-point
correlator:

∂

∂t
〈φ2〉L =

H3

4π2
− 2m2

3H
〈φ2〉L −

2λ

H
〈φ2〉2L .

As t →∞, all of the solutions to this equation approach an
equilibrium value that satisfies

H3

4π2
− 2m2

3H
〈φ2〉L −

2λ

H
〈φ2〉2L = 0 .



For λ = 0, we have

〈φ2〉L =
3H4

8π2m2
.

When λ 6= 0, we have

〈φ2〉L =
m2

6λ

(√
1 +

9λH4

2π2m4
− 1

)
;

we chose the root that coincides with the preceding
expression in the limit λ→ 0. Assuming that λH4/m4 � 1,
and expanding the preceding expression yields

〈φ2〉L =
3H4

8π2m2
− 27λH8

64π4m6
+

243λ2H12

256π6m10
+O(λ3) .



Comparing this expansion with the results obtained by the
field-theoretical methods, we see that they match at zeroth-
and first-order in λ, but there is a mismatch at second order:
the λ2-term omits the contribution of the sunset diagram and
is equal to the sum of other two diagrams. Hence, it can be
concluded that the Hartree-Fock approximation resums all
cactus type diagrams of the perturbation theory.



The stochastic approach argues that the behavior of the
long-wavelength part of the quantum field φ(~x , t) in de Sitter
space can be modelled by an auxiliary classical stochastic
variable ϕ with a probability distribution ρ(ϕ, t) that satisfies
the Fokker-Planck equation

∂ρ

∂t
=

H3

8π2

∂2ρ

∂ϕ2
+

1

3H

∂

∂ϕ

(
∂V

∂ϕ
ρ(t, ϕ)

)
.

In our case the potential has the form

V (ϕ) =
1

2
m2ϕ2 +

λ

4
ϕ4 .



At late times any solution of the Fokker-Planck equation
approaches the static equilibrium solution

ρeq(ϕ) = N−1 exp

(
− 8π2

3H4
V (ϕ)

)
,

where N is the normalization fixed by the condition∫ ∞
−∞

ρeq(ϕ) dϕ = 1 .

In our case we can calculate this normalization explicitly

N =

∫ ∞
−∞

exp

[
− 8π2

3H4

(
λϕ4

4
+

m2ϕ2

2

)]
dϕ

=
m√
2λ

exp(z)K 1
4
(z) ,

where K 1
4
(z) is a modified Bessel function of the second kind,

and z ≡ π2m4

3λH4 .



Using this equilibrium distribution, we obtain

〈ϕ2〉 =
m2

2λ

K 3
4
(z)

K 1
4
(z)
− m2

2λ
.

Expanding this in the limit λH4/m4 � 1 (which corresponds
to z � 1) gives

〈ϕ2〉 =
3H4

8π2m2
− 27λH8

64π4m6
+

81λ2H12

64π6m10
+O(λ3) .

This result is in agreement with the result of the quantum
field theory calculations, and unlike the Hartree-Fock
approximation, it includes the contribution of the sunset
diagram.



The long-wavelength two-point function of φ(~x , t) too can be
calculated by using the classical stochastic variable ϕ: if the
points (~x , t1) and (~y , t2) are timelike or lightlike related, this
correlation function is given by

〈φ(~x , t1)φ(~y , t2)〉L = 〈ϕ(t1)ϕ(t2)〉 .
If the correlation function 〈ϕ(t1)ϕ(t2)〉 depends only on the

absolute value of the time difference T ≡ |t1 − t2|, it can be
expressed as

〈ϕ(t1)ϕ(t2)〉 =

∫ ∞
−∞

ϕΞ(ϕ,T )dϕ ,

where the function Ξ(ϕ,T ) satisfies the Fokker-Planck
equation,

∂Ξ

∂T
=

H3

8π2

∂2Ξ

∂ϕ2
+

1

3H

∂

∂ϕ

(
∂V

∂ϕ
Ξ(ϕ,T )

)
,

with the initial condition

Ξ(ϕ, 0) = ϕρeq(ϕ) .



Derivatives of 〈ϕ(t1)ϕ(t2)〉 at T = 0 can be computed by
using the equations above:

∂

∂T
〈ϕ(t1)ϕ(t2)〉

∣∣∣∣
T=0

= − H3

8π2
,

∂2

∂T 2
〈ϕ(t1)ϕ(t2)〉

∣∣∣∣
T=0

=
H2

24π2

(
3λ〈ϕ2〉+ m2

)
,

and so on. It is easy to confirm that the T -derivatives of the
two-point correlation function presented earlier (for
Z > 1− 1

2ε2
case) satisfy these equalities as well.



Exponentiation of the perturbative series

The expression for the two-point correlation function can be
presented in the following way: (the case Z > 1− 1

2ε2
):

〈φ(~x , t1)φ(~y , t2)〉L =
H2

8π2u

(
1− λ

8π2u2
+

5λ2

128π4u4

)
e−uHT

− λH3T

64π4u2

(
1− 3λ

8π2u2

)
e−uHT

+
λ2H4T 2

1024π6u3
e−uHT +

λ2H2

3072π6u5
e−3uHT +O(λ3)

=
H2

8π2u

(
1− λ

8π2u2
+

5λ2

128π4u4
+O(λ3)

)
×

[
1− λHT

8π2u
+

λ2HT

32π4u3
+

1

2

(
λHT

8π2u

)2

+O(λ3)

]
e−uHT

+
λ2H2

3072π6u5
e−3uHT + . . . ,



To second order in λ, the expression in squared brackets
matches with the first three terms in the Taylor series of the
exponential function

exp

[
−λHT

8π2u

(
1− λ

4π2u2

)]
,

so it is plausible that an infinite series of diagrams may be
resummed into this exponent. With this assumption, we arrive
at

〈φ(~x , t1)φ(~y , t2)〉L =
H2

8π2u

(
1− λ

8π2u2
+

5λ2

128π4u4
+O(λ3)

)
× exp

[
−uHT

(
1 +

λ

8π2u2
− λ2

32π4u4
+O(λ3)

)]
+

λ2H2

3072π6u5
exp
[
−3uHT

]
+ . . . .



Analogously for Z < 1− 1
2ε2

:

〈φ(~x , t1)φ(~y , t2)〉L =
H2

8π2u

(
1− λ

8π2u2
+

5λ2

128π4u4
+O(λ3)

)
×
(
r 2H2eH(t1+t2)

)−u(1+ λ
8π2u2

− λ2

32π4u4
+O(λ3)

)

+
λ2H2

3072π6u5

(
r 2H2eH(t1+t2)

)−3u
+ . . . ,

In this regime the equal-time correlation function depends
only on the physical spatial distance R ≡ reHt .

We see that the perturbative corrections don’t change the
long-wavelength part of the commutator: just as in the free
theory case, it is equal to zero both for timelike and spacelike
related points.



As T →∞, the two-point function decays with the
characteristic correlation time

Tc ∼
1

uH
=

3H

m2
� 1

H
.

Similarly, as R →∞, the equal-time correlation function
decays with the characteristic correlation length

Rc ∼
1

H
exp

(
3H2

2m2

)
.

This behavior differs from a much faster exponential decay of
the equal-time correlation function in flat spacetime:

〈φ(~x , t)φ(~y , t)〉flat ∼
√

m/r 3e−mr as r →∞.



Conclusions

I We have calculated—up to two loops—the
long-wavelength two-point function for a scalar theory
with a small mass and a quartic interaction.

I It has been shown that it is de Sitter invariant for
coinciding points as well as at large spacelike and large
timelike separations.

I We have demonstrated that the commutator of the
long-wavelength part of the field is equal to zero both at
the free theory level and with the perturbative corrections.

I Our results are in agreement with Starobinsky’s stochastic
approach in which the coarse-grained quantum field is
equivalent to a classical stochastic quantity.

I It would be interesting but more difficult to consider
similar problems on more general backgrounds.


