The MBTA Pipeline for Detecting Compact Binary Coalescences in the Third LIGO-Virgo Observing Run

Florian Aubin
On behalf of the MBTA team

The LIGO-Virgo-KAGRA collaboration

A network of **Gravitational Waves** (GW) detectors

• Heterogeneous sensitivities

Different duty cycles

Observing runs

O3: 2019-2020

LIGO + Virgo

O4: 2022-2023

LIGO + Virgo + KAGRA

F. Aubin - SIGRAV - September 2021

The O3 Multi-Band Template Analysis in a Nutshell

- Compact Binary Coalescences (CBC)
 - Online
 - Low latency automatic and public alerts
 - Offline

- Match filtering analysis
 - Two frequency bands
 - o 3 regions parameter space
 - ~ 750k templates

Region	$m_1/{ m M}_{\odot}$	$m_2/{ m M}_{\odot}$		$ \chi_{1,z} _{\max}$	$\left \chi_{2,z}\right _{\mathrm{max}}$
1	[1;2]	[1;2]		0.05	0.05
2	[1;2]	[2:100]		0.05	0.997
3	[2;195]	[2:195]		0.997	0.997
	$(m_1 + m_2) < 200 \mathrm{M}_{\odot}$				

Noise rejection

- Preprocessing
- Signal consistency tests

Data preprocessing

Receiving data from detectors

- Calibrated and conditioned data
- Resampling at 4 kHz

Applying a gating procedure

- Searching for rapid variation in PSD
- Monitoring of the "instantaneous" BNS range

Data quality flags provided by detectors

External triggers for the gating procedure

Single detector searches

Matched filtering

- Signal to Noise Ratio (SNR $\equiv \rho$) time series
- In-phase (P) and in-quadrature (Q)
- Ranking Statistic (RS) threshold

Signal consistency tests

- ξ²: χ²-test between the measured SNR time serie and template autocorrelation
- Modified RS: **reweighted** SNR (ρ_{rw})

$$\rho_{rw} = \begin{cases} \rho & \text{if } \xi_{PQ}^2 \le 1\\ \rho \left(\frac{A + \xi_{PQ}^2}{A + 1}\right)^{-1/\beta} & \text{if } \xi_{PQ}^2 > 1 \end{cases}$$

5/13

Penalize noisy periods

Noise rejection tools are efficient

- Some bad candidates survive in noisy periods
- **Identify** these periods
 - **ExcessRate** (E_p): comparing the rates before and after ξ^2
 - Using a median value over 10 sec

Modified RS

$$\rho_{rw,E_R} = \begin{cases}
\rho_{rw} & \text{if } E_R \le 0.3 \\
\rho_{rw} \left[1 - A(E_R - 0.3)^{\alpha} \right] & \text{if } E_R > 0.3
\end{cases}$$

F. Aubin - SIGRAV - September 2021

Coincidence search

Time coincidences between single detector triggers

- Same template
- **Double** coincidences: HL, HV, LV
 - Time windows: $\omega_{HI} = \pm 15 \text{ ms}$; $\omega_{HV} = \omega_{IV} = \pm 35 \text{ ms}$
- **Triple** coincidences: HLV
 - Pair of HL and HV sharing the same H trigger

Combined ranking statistic (cRS)

$$\rho_{RS,ij}^2 = \rho_{rw,E_R,i}^2 + \rho_{rw,E_R,j}^2 + 2\ln(P_{\Delta t_{ij}}P_{\Delta\phi_{ij}}P_{RA_{ij}})$$
 Single trigger PS

Single trigger RS

Probabilities for astrophysical signals

- time delay
- phase shift
- relative amplitude

Assessing a False Alarm Rate

Rate of noise triggers produced by the analysis with a cRS equal or larger than the candidate

- Based on all possible pairs of noise triggers
- Over past 24h (online)

$$\text{Coincidence time window} \\ FAR_{ij}(\rho_{RS,ij}) = N_{ij}(\rho_{RS,ij})w_{ij}/(T_iT_j) \\ \text{FAR of a ij coincidence with cRS = } \\ \varrho_{\text{RS,ij}} \\ \text{Number of pair of encomplete time of the constant of time of the constant of time of$$

IFAR (≡ 1/FAR) for the overall search

- Multiple searches
 - 3 regions
 - Same weights 1/3
 - 4 types of coincidences
 - Weights estimated with an astrophysical simulation
- Clustering

IFAR =
$$\frac{\kappa_{\text{region}} \kappa_{\text{coinc}}}{\kappa_{\text{cluster}} \text{ FAR}(\rho_{RS})}$$

The behaviour of the MBTA online pipeline during O3

Technical behaviour

- ~ 18 sec addition to global latency
- ~ 0.2% gated data
- ~ 3% ExcessRate > 0.3 (noisy periods)

Results of the analysis

- Similar to the other pipelines
- Contribution to 42 low-latency public alerts
- Noise produced consistent with stationary noise
 - 5 retractions

F. Aubin - SIGRAV - September 2021

9/13

The new MBTA offline analysis

Searching CBC on chunks of ~ 1 week

- Same version than online with slight modifications
 - ExcessRate computed with a +7 sec offset
 - FAR estimated on full chunk
 - Past and future

F. Aubin - SIGRAV - September 2021

Assessing astrophysical probabilities

Events are given with a set of origin probabilities $\mathbf{P}_{\mathsf{Astro}}$

- O3 online
 - 5 categories
 - Terrestrial, BNS, NSBH, BBH, MassGap
 - Computed with an other pipeline approach

O3 offline MBTA P_{Astro} estimation

- 4 categories
- Background rate
 - Estimated with FAR
- Astrophysical rates
 - Based on astrophysical priors
 - Normalized by simulation

$$pAstro(cRS) = \frac{rateBNS(cRS) + rateBBH(cRS) + rateNSBH(cRS)}{rateBNS(cRS) + rateBBH(cRS) + rateNSBH(cRS) + rateBackground(cRS)}$$

MBTA in the O3 catalogues

O3A: May 2019 - Oct 2019

arXiv:2108.01045

- CBC search
 - 44 high-significance (P_{Astro} ≥ 0.5) candidates
 - 30 identified by MBTA
 - Exciting scientific results
- Sub-Solar Masses search
 - Publication coming very soon
 - o MBTA
 - No significant candidate
 - Upper limit on merger rate

O3B: Nov 2019 - March 2020

- Some exceptional events already public
 - o NSBH, IMBH...
- Full catalogue coming soon

Towards O4 and beyond

Include KAGRA

Parameter space

- Up to **500 solar masses**
- Higher Order Modes
- Precession

Noise rejection

- Fine tuning and new tools
- Finer division of the bank

New features

- Online **P**_{Astro}
- Single detector candidates
- Early warning alerts

Backups

The low latency MBTA pipeline

The public alert chain

