

NFN

Einstein Telescope

the European 3rd generation Gravitational Wave Detector The pipe vacuum system

> Aniello Grado^a Fulvio Ricci^b Antonio Pasqualetti^c

Credits: Harald Lueck, Yoshi Saito, C. Bradaschia, Michael Zucker, ET collaboration

^a co-chair ET beam pipes
 ^b co-chair ET vacuum and cryogenics
 ^c Virgo vacuum responsible

XXIV SIGRAV Conference 7-9 September, Urbino

Einstein Telescope in a nutshell ET

- The Einstein Telescope (ET) will be a new 3rd generation (3G) GW observatory
- 3G means a factor ~10 better than advanced (2G) GW detectors, and ~1000 more universe to explore
- A completely new infrastructure is needed
- 2 possible sites: Sardinia (Italy) and Dutch-German-Belgium border
- ~ 200 m underground
- 30 km ~7 m diameter galleries + caverns (30x30x60 m)
 -> total excavation 5.4 Mm³
- 6 interferometers arranged in triangular shape
- 120 km 1 m beam tubes UHV (10⁻¹⁰ mbar)
- ~200 in-vacuum towers to host the seismic isolation systems
- Mirrors 200 kg
- Some part under criogenics operation (~ 20 k)
- > 500 W ultra stabilized lasers
- Lifetime: 50 years
- Total cost ~ 1.7 Geuro + R&D

HOME > NEWS > LATEST ESFRI NEWS

ESFRI announces new RIs for Roadmap 2021

30.06.2021

PRESS RELEASE

ESFRI announces the 11 new Research Infrastructures to be included in its Roadmap 2021

 ${\ensuremath{\mathfrak{C}}}4.1$ billion investment in excellent science contributing to address European challenges

After two years of hard work, following a thorough evaluation and selection procedure, ESFRI proudly anneances the **11 proposals** that have been scored high for their science case and maturity for implementation and will be included as new Projects in the **ESFRI 2021 Readmap Update**.

The new ESFRI Froects

- **ETRANS** European Brain ReseArch INfrastructureS, a distributed digital Infrastructure at the interface of neuroscience, computing and technology, offering scientists and developers advanced tools and services for brain research.
- **EIRENE RI** Research Infrastructure for EnvlRonmental Exposure assessment in Europe, the first EU infrastructure on human exposome (environmental

determinants of health).

• ET - Einstein Telescope, the first and most advanced third-generation gravitational-wave observatory, with unprecedented sensitivity that will put

- Europe at the forefront of the Gravitation Waves research.
- EuPRAXIA European Plasma Research Accelerator with Excellence in

Related files

Press Release-New Projects for ESFRI Roadmap 2021

📸 🗌 in

Latest news

06.07.2021 ESFRI Days 2021

Access the EUFRAT nuclear research infrastructures apply until 15/09/2021

#GELINA #HADES #RADMET #MONNE1

05.07.2021 Calls for open access projects in JRC Nuclear Research Infrastructures

Latest ESFRI tweets

A new ambition for #ResearchInfrastructures in the #European Research Area" lays out the specific role research inf... https://t.co/w8vQQY2ugD

ET vacuum

Why under vacuum?

- reduce the noise due to residual gas fluctuations along the beam path to an acceptable level;
 - isolate test masses and other optical elements from acoustic noise;
 - reduce test mass motion excitation due to residual gas fluctuations,
 - contribute to thermal isolation of test masses and of their support structures;
 - contribute to preserve the cleanliness of optical elements.

Effect of gas pressure on detector sensitivity

Fluctuations of residual gas density induces a fluctuations of refractive index and then of the laser beam optical path

ET beam tubes requirements

- Tube diameter ~ 1m
- Total lenght 120 km

Surface: 3.8x10⁵ m² Volume: 9.4x10⁴ m³

- Total residual pressure: $H_2 \ 10^{-10} \text{ mbar}$, $H_2 O \ 5x10^{-11} \text{ mbar}$, $N_2 \ 10^{-11} \text{ mbar}$ (more stringent reqs comes from ET-HF)
- Hydrocarbon partial pressure < 10⁻¹⁴ mbar
- Material ?(2G detectors: SS 304L or 316L)
- Life time: 50 years

Figure 6.16: Phase noise given by the residual gases compared to the expected sensitivity, computed for the appropriate beam profile for different gas compositions. (Goal gas composition: Hydrogen [$1 \, 10^{-10}$ mbar], Water [$5 \cdot 10^{-11}$ mbar], Nitrogen [$1 \, 10^{-11}$ mbar])

ET technical report 2020

To reach UHV

Two main treatments for austenitic stainless steel

- Air-firing
 - High temperature (400 450 °C) in oven with dry air flux in order to remove the H from bulk material. Factor 3 - 4 depletion of H₂ content. Permanent
- Bake-out
 - Treatment at ~200 °C in-situ under vacuum to remove the tightly bonded H₂O from the surfaces. If vented to air needs to be repeated

- 24000 m² walls!
- They contain "only" optical baffles and the laser beam

MODULES MANUFACTURING

Technical requirement:

- 404 modules (2 x 3 km)
- Leak rate: 3.10⁻¹⁰ mbar.l.s⁻¹
- Dimensions: L 15 m x Ø 1.2 m
- Thickness: 4 mm
- Tolerances: see dwg
- Material: 1.4307 (SS304L)

Schedule requirement:

- Workshop ready: 10 months
- First-of-a-kind: 2 months
- Serial units: 1 module/day

The Virgo experience TUBE manufacturing

-304L cold rolled sheets / solution annealed - surface finish 2B (EN1.4307 by Avesta S.)

'Conventional' industrial tools, rate = 1 module / day (it took about 2 years).

- modules realized in 3 consecutive cylinders plus the hydroformed bellows.
- UHV recipes (specific machining oil, dirt free rolling, separated halls and tools, ...)

Virgo experience: AIR-BAKE OUT

Base material conditioning was required to meet vacuum goals (24000 m² walls).

heating at ~ 400°C in air involved a "simple" oven and reduced the hydrogen outgassing by a factor ~ 100; our result: $q(H_2) \leq 3E-14 \text{ mbar.l.s}^{-1}\text{cm}^{-2} @ 20°C$ Original studies pointed to 'bulk ordinary sites role', not conclusive (*)

The industrial specification was: $q(H_2) = 5E-14 - NOT CONTRACTUAL -$

- Applied to finished modules
- Electrical oven, 'sealed' modules
- 410°C +20/-10, plateau 72h
- Hot air purge 8 m³h⁻¹
- 5 days long cycle
- H content raw mat. ≤ 2 ppm wt -CONTRACTUAL -

Virgo TUBES: BAKE-OUT in situ

- \circ Chamber at 150°C uniform and at a controlled rate (~1 week for SAT stage)
- 1 Mwatt to heat one tube (15 cm thick thermal insulation)
- Joule effect: 2000 A flowing through tube walls
- $\,\circ\,\,$ diesel generators: ~ 10^5 litres of fuel to bake one tube

Normally to be performed just one time.

North or West Tube bake-out

GEO 600 experience

- Stainless steel (316LN)
- 60 cm diameter
- 2 * 133 * 4.5m segments
- 0.8 mm wall thickness
- 30 mm wave period
- Weight 2 * 12 t

Advantages:

- 1. Weight easier assembly, little material (costs),
- 2. No bellows needed
- 3. easy bake-out

First segment of tube being pushed into the trench

Only 60kg per segment

GEO 600 experience

Despite of the harsh condition one leak after 20 years due to MIC, a second leak after 25 years at an attached valve in trench (lower quality stainless steel)

Very successful !!!!

A. Grado INAF/INFN

LIGO experience

Beam Tubes

- 3.2 mm thick with external stiffeners
- Raw stock air baked 36h @ 455C

- coil spiral-welded into 1.2m tube 16m long
 - method adapted from sewer pipe industry
- 16m sections cleaned, leak checked
- FTIR analysis to confirm HC-free
- sections field butt-welded together in travelling clean room
- Over 50 linear km of weld

A. Grado INAF/INFN

KAGRA

4. Production Process and Installation

* surface finish of tubes and chambers * flange and gasket

hydro-formed bellows; SS316L, 0.6 mm thick, chemical polished

Credits: Yoshi Saito Very harsh conditions: 95-99 % umidity *unit tube of 12-m long and 0.8-m in diameter*

Yoshi Saito et al., JVSJ, Vol.54, No.12, pp.621-626 (2011)

electrolytic polishing (EP) and rinsing with ultra pure water;

removing 25 µm of outermost laye

Beam tubes comparison

	Virgo	LIGO	KAGRA	GEO600
Material (AISI)	304L	304L	304L	316L
Length (Km)	6	2x8	6	1.2
Diameter (m)	1.2	1.24	.81	0.6
Section length (m)	15	20	12	4.5
Thickness (mm)	4	3.23	8	0.8
Tube type	Sheet welded	Spiral weld	Sheet welded	Sheet weld +cold formed deep corrugated
Pipe cost (euro/m)	2400	2200	4745ª	440
Vacuum (H ₂ O) mbar	5.6x10 ⁻¹⁰	1.3x10 ⁻¹⁰	1.5x10 ⁻⁸	1.5x10 ^{-7 b}
Distance among pumps (m)	600		600	
Firing Temp (°C)	400	455	200	200
Firing duration	5 days	36 h	20 h	48 h
Bakeout Temp	150	160	Electro-polishing	250
Bakeout duration	1 week	3 weeks		5 days
pumps	Turbo, Ion + Ti Sub. pumps	Turbo, Ion +NEGs	Turbo, Ion	6xTurbo

^abellowsSS316L, flanges, crow clamp, EP-finished, baked

^bupgrade vacuum system foreseen this year

2 main problems:

- Material/processing costs
- Outgassing -> bakeout underground

Just scaling the Virgo vacuum costs to ET it would requires

> 500 Meuro !!

Pumping system design

In Virgo 15% of the budget went in pumping

• Reach the target vacuum

<image>

Figure 6.22: 3D view of a pumping station: the blue objects represent the pumps and sensors, the yellow ones the cabinets for pumps control and baking power supply (1 cabinet for all). A separate small room is reserved for the high voltage electrical transformer.

- Management of the mechanical vibrations and acoustic noise
 - Usage of getter pumps ?
 - Development of low profile getter pumps
- A carefull design and pumps distribution optimization

Pipe section simulation (Molflow+ 2.8.6)

250 m section pipe with one pump in the middle 3000 l/s

Assumed outgassing rate = 1.3E-15 mbar l s⁻¹ cm⁻² (after firing)

 H_2 pressure profile between 1.2E⁻¹⁰ and 1.46E⁻¹⁰ mbar

Pipe section simulation (Molflow+ 2.8.6)

1000 m section pipe with one pump in the middle 3000 l/s

Assumed H₂ outgassing rate = 1.3E-15 mbar l s⁻¹ cm⁻² (after firing)

H₂ pressure profile between 4.5E⁻¹⁰ and 8E⁻¹⁰ mbar

R&D on vacuum system

- Materials: austenitic, low carbon steel, aluminium, other?
 - cost effective solution, low H₂ content, UHV compatible
 - comparative outgassing tests
- Cheap surface cleaning scalable to large area (~400000 m²)
- Inner surface passive coating
 - hydrogen permeation barrier scalable to large area
- corrosion

ET beam pipe some tought

 Size scaling is not enough. We must consider the production time For Virgo the production rate was 1 section/day Air-firing took 5 days for 4 modules (oven loaded with 4 modules)

Installation took 2 modules/day

For ET we need 8000 15m sections

If we want to install the pipes in 3 years we need ~10 ovens for the air-firing working in parallel (each processing 4 modules) and a production/installation rate of 8 modules/day

- Pseudo-valves: start R&D on cheap valves to create pipe sectors. Helps installation, bakeout, maintenance
- RAMS needed: careful evaluation of a catastrophic event underground coupling with tunnels design

Thank you for your attention

