

New directions for QFT in curved Spacetime
sigrav XXIV - urbino

Take home

Symmetry breaking mechanisms are modified in curved spaces by effective masses of purely geometrical origin

Fasolino et al, Nature Materials (2011)

切り紙

Castro，Flachi，Ribeiro \＆me，PRL（2018）
Flachi \＆me，PRD（2019）

> bowl
> $[n]=3^{a}-5$

[4]circulene rigid / RSE
[5]circulene non-rigid / RSE

saddle
$[n]=7-16^{\circ}$

Rickhaus et al., Chemical Society Reviews (2017)

Hubbard model

$$
\mathrm{H}=-t \sum_{\mathbf{r}, i, \sigma= \pm} u_{\sigma}^{\dagger}(\mathbf{r}) v_{\sigma}\left(\mathbf{r}+\mathbf{b}_{i}\right)+\text { H.C. }+\frac{U}{4} \sum_{\mathbf{r}, \sigma, \sigma^{\prime}, i}\left(n_{\sigma}(\mathbf{r}) n_{\sigma^{\prime}}(\mathbf{r})+n_{\sigma}\left(\mathbf{r}+\mathbf{b}_{i}\right) n_{\sigma^{\prime}}\left(\mathbf{r}+\mathbf{b}_{i}\right)\right)
$$

Hubbard model

Hopping

Interaction

Scalettar, Quantum Materials (2016)

Hubbard model

Bosonization

$$
\begin{gathered}
\mathscr{L}=\bar{\psi}_{\sigma} \imath \not \partial \psi_{\sigma}+\left(\sigma \bar{\psi}_{\sigma} \phi \psi_{\sigma}\right)+\frac{\phi^{2}}{2 \lambda} ; \quad \sigma= \pm \\
\psi_{\sigma}^{T}=\left(\psi_{\sigma}^{A 1}, \psi_{\sigma}^{B 1}, \psi_{\sigma}^{A 2}, \psi_{\sigma}^{B 2}\right) \quad \text { e.g. Weng et al, PLB[R] (1990); Schultz, PRL (1990) } \\
\psi_{\sigma}^{I J}=\int d^{2} p e^{-\tau \mathbf{p} \cdot \mathbf{r}} z_{\sigma}^{I J}(\mathbf{p})
\end{gathered}
$$

The metric

A conical metric...

$$
d s^{2}=d \tau^{2}+d r^{2}+\alpha^{2} r^{2} d \varphi^{2}
$$

...and its regularisation

$$
d \tilde{s}^{2}=d \tau^{2}+f_{\epsilon}(r) d r^{2}+\alpha^{2} r^{2} d \varphi^{2}
$$

With

1) $\lim _{\epsilon \rightarrow 0} f_{\epsilon}(r)=1$;
2) $f_{\epsilon}(r) \approx 1$ for $r \gg \epsilon$;
3) $f_{\epsilon}(r)=$ const for $r=0$

The effective action

$$
\begin{gathered}
\tilde{\Gamma}[\phi]=-\int d^{3} x \sqrt{\tilde{g}} \frac{\phi^{2}}{2 \lambda}+\operatorname{Tr} \log \left(\imath \gamma^{\mu} \tilde{D}_{\mu} \pm \phi\right) \\
\tilde{\Gamma}[\phi]=-\int d^{3} x \sqrt{\tilde{g}} \frac{\phi^{2}}{2 \lambda}+\frac{1}{2} \sum_{p= \pm} \log \operatorname{det}\left(\tilde{\square}+\frac{\tilde{R}}{4}+\phi^{2} \pm \sqrt{\tilde{g}^{r r}} \phi^{\prime}\right)
\end{gathered}
$$

Results

Castro, Flachi, Ribeiro \& me, PRL (2018) Flachi \& me, PRD (2019)

How does the interplay between strong interactions and gravity work?

BHs outskirts:curvature effects comparable to Lambda_QCD

$$
T_{B H} \sim 1 / m_{B H}
$$

Photons, neutrinos and gravitons... ...electrons... ...muons, pions and heavier hadrons

Effective field theory models

Massive fermions: spontaneously broken symmetry

$$
S_{\mathrm{NJL}}=\int d^{4} x \sqrt{g}\left\{\bar{\psi} i \gamma^{\mu} \nabla_{\mu} \psi+\frac{\lambda}{2 N}(\bar{\psi} \psi)^{2}\right\}
$$

Generation dynamical effective mass $M_{\text {eff }} \sim\langle\bar{\psi} \psi\rangle$

The gourmet recipe

NJL + Large N approximation

+ Hubbard-Stratonovich transf.

$$
\begin{gathered}
\Gamma=-\int d^{4} x \sqrt{g}\left(\frac{\sigma^{2}}{2 \lambda}\right)+\operatorname{Tr} \ln \left(i \gamma^{\mu} \nabla_{\mu}-\sigma\right) \\
\text { with } \sigma[r] \equiv-\frac{\lambda}{N} \bar{\psi} \psi
\end{gathered}
$$

Flachi, PRL (2013)
Flachi and Fukushima, PRL (2014)
Flachi, Fukushima \& me, PRL (2015)

The chiral gap effect

QCD phase diagram is in principle much more complicated...

Flachi, PRL (2013)
Flachi and Fukushima, PRL (2014)
Flachi, Fukushima \& me, PRL (2015)

A Boson Carousel

Cold atoms trap, CsNiCI 3 and NENP antiferromagnets

Flachi and me, JoPA(2021)
Corradini et al (including me), JoPA(2021)
Cf. also with Cominotti et al, PRL(2014)

Summary and some food for thought...

\therefore Symmetry breaking response to geometrical deformations, from BHs to 2D graphene-like kirigami

* Special defects configurations?
\% Higher dimensions?
$\therefore 3 \mathrm{D}$ lattice structures and nature of the defects?

HS transformation

$$
H=-t \sum_{\langle i, j\rangle_{\sigma}}\left(c_{i \sigma}^{\dagger} c_{j \sigma}+\text { H.c. }\right)+U \sum_{j} n_{i \uparrow} n_{i \downarrow}
$$

$$
\begin{gathered}
n_{i \uparrow} n_{i \downarrow}=\frac{\rho_{i}^{2}}{4}-\left(S_{i}^{2}\right)^{2} \quad \rho_{i}=n_{i \dagger}+n_{i \downarrow} \quad S_{i}^{z}=\frac{1}{2} \sum_{\sigma} c_{i \sigma}^{\dagger} \sigma_{z} c_{i \sigma} \\
e^{U \sum_{i} n_{i} n_{i \downarrow}}=\int \prod_{i} \frac{d \phi_{i} d \Delta_{i} d^{2} \mathbf{n}_{i}}{4 \pi^{2} U} \exp \sum_{i}\left(\frac{\phi_{i}^{2}}{U}+i \phi_{i} \rho_{i}+\frac{\Delta_{i}^{2}}{U}-2 \Delta_{i} \mathbf{n}_{i} \cdot \mathbf{S}_{i}\right)
\end{gathered}
$$

$$
z=\int \prod_{i} \frac{d c_{i}^{\dagger} d c_{i} d \phi_{i} d \Delta_{i} d^{2} \mathbf{n}_{i}}{4 \pi^{2} U} \exp \left(-\int_{0}^{\beta} L(\tau)\right)
$$

$$
L(\tau)=\sum_{i \sigma} c_{i \sigma}^{\dagger} \partial_{\tau} c_{i \sigma}-t \sum_{\langle i, j)_{\sigma}}\left(c_{i \sigma}^{\dagger} c_{j \sigma}+\text { H.c. }\right)
$$

$$
+\sum_{i}\left(\frac{\phi_{i}^{2}}{U}+\left(i \phi_{i}-\mu\right) \rho_{i}+\frac{\Delta_{i}^{2}}{U}-2 \Delta_{i} \mathbf{n}_{i} \cdot \mathbf{S}_{i}\right)
$$

Effective action calculation

$$
\begin{gathered}
D=\log \operatorname{det}\left(\tilde{\square}+E_{p}\right) \\
\zeta_{p}(s)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} \frac{d \tau}{\tau^{s-1}} \operatorname{Tr} e^{-\tau\left(\tilde{\square}+E_{p}\right)} \\
\mathscr{K}(\tau)=\frac{e^{-\tau E_{p}}}{(4 \pi \tau)^{3 / 2}} \sum_{k} a_{k} \tau^{k} \\
a_{0}=1, a_{1}=0, a_{2}=\frac{1}{180}\left(\tilde{R}_{\mu \nu \alpha \beta} \tilde{R}^{\mu \nu \alpha \beta}-\tilde{R}_{\mu \nu} \tilde{R^{\mu \nu}}\right)-\frac{1}{30} \tilde{\Delta} \tilde{R}+\frac{1}{6} \tilde{\Delta} E_{p}+\frac{1}{12} W^{\mu \nu} W_{\mu \nu} \\
D=\int_{\text {vol }}\left(\zeta^{\prime}(0)+\zeta(0) \log \ell^{2}\right)
\end{gathered}
$$

Boundary conditions calculation

$$
\begin{aligned}
\imath \bar{\psi} \gamma^{\mu} \nabla_{\mu} \psi+\frac{\lambda}{2 \mathcal{N}}(\bar{\psi} \psi)^{2} & =\imath \psi^{\prime \dagger} A^{\dagger} \gamma^{0} \gamma^{\mu} \nabla_{\mu}\left(A \psi^{\prime}\right)+\frac{\lambda}{2 \mathcal{N}}\left(\psi^{\prime \dagger} A^{\dagger} \gamma^{0} A \psi^{\prime}\right)^{2}= \\
& =\imath \psi^{\prime \dagger} A^{\dagger} \gamma^{0} \gamma^{\mu}\left(\nabla_{\mu} A\right) \psi^{\prime}+\imath \psi^{\prime \dagger} \gamma^{0} \gamma^{\mu} \nabla_{\mu} \psi^{\prime}+\frac{\lambda}{2 \mathcal{N}}\left(\overline{\psi^{\prime}} \psi^{\prime}\right)^{2}= \\
& =\imath \psi^{\prime \dagger} \gamma^{0} \gamma^{\mu} A^{\dagger}\left(\nabla_{\mu} A\right) \psi^{\prime}+\imath \overline{\psi^{\prime}} \gamma^{\mu} \nabla_{\mu} \psi^{\prime}+\frac{\lambda}{2 \mathcal{N}}\left(\overline{\psi^{\prime}} \psi^{\prime}\right)^{2}= \\
& =\imath \overline{\psi^{\prime}} \gamma^{\mu}\left(-\imath \delta_{\mu}^{\dagger} \frac{N_{d}}{4} R\right) \psi^{\prime}+\imath \overline{\psi^{\prime}} \gamma^{\mu} \nabla_{\mu} \psi^{\prime}+\frac{\lambda}{2 \mathcal{N}}\left(\overline{\psi^{\prime}} \psi^{\prime}\right)^{2}
\end{aligned}
$$

$$
\imath \overline{\psi^{\prime}} \gamma^{\mu}\left(\nabla_{\mu}-\imath \mathcal{B}_{\mu}\right) \psi^{\prime}+\frac{\lambda}{2 \mathcal{N}}\left(\overline{\psi^{\prime}} \psi^{\prime}\right)^{2} \equiv \imath \overline{\psi^{\prime}} \gamma^{\mu} \mathcal{D}_{\mu} \psi^{\prime}+\frac{\lambda}{2 \mathcal{N}}\left(\overline{\psi^{\prime}} \psi^{\prime}\right)^{2}
$$

Large-N expansion

$$
\begin{aligned}
& S=\frac{1}{2} \int d^{d} x\left\{\sum\left|\partial_{\mu} n_{i}\right|^{2}-\frac{\alpha(x)}{\sqrt{N}}\left(\sum\left|n_{i}\right|^{2}-\frac{N}{f}\right)\right\} \\
& z=\int \mathcal{D} \alpha \mathcal{D} n \exp [-S]=\int \mathcal{D} \alpha \mathcal{D} n \exp \left\{-\frac{1}{2} \int d^{d} x\left\{\sum\left|\partial_{\mu} n_{i}\right|^{2}-\frac{\alpha(x)}{\sqrt{N}}\left(\sum\left|n_{i}\right|^{2}-\frac{N}{f}\right)\right\}\right\} \\
& z=\int \mathcal{D} \alpha \exp \left[-S_{\text {eff }}=\int \mathcal{D} \alpha \exp \left\{-\left[\frac{N}{2} T \operatorname{Hog}\left(-\partial^{2}+\frac{\alpha(x)}{\sqrt{N}}\right)-\int d^{d} x \cdot \frac{\alpha(x) \sqrt{N}}{2 f}\right]\right\}\right. \\
& S_{\text {eff }}=\frac{N}{2} T \text { Hog }\left(-\partial^{2}+M^{2}\right)-\int d^{d} x \cdot \frac{N}{2 f} M^{2} \text { terms in } \delta \alpha \text { with lower order in } \mathrm{N}
\end{aligned}
$$

Effective action calculation

$$
\begin{gathered}
S_{e f f}^{E}=-\frac{N}{2} \int d^{D-1} x \cdot\left(\zeta(0) \log \Lambda^{2}+\zeta^{\prime}(0)\right)-\int_{0}^{\beta} d \tau \int d^{D} x \cdot M^{2} \cdot r \\
\zeta(s)=\sum_{k n=-\infty}^{\infty} \int \frac{d^{D-1} q}{(2 \pi)^{D-1}}\left(\mathbf{q}^{2}+p_{k}^{2}+4 \pi^{2} n^{2} / \beta^{2}\right)^{-s} \quad\left(-\frac{\partial^{2}}{\partial x_{1}^{2}}+M^{2}\right) f_{k}=p_{k}^{2} f_{k} \\
\zeta(s)=\frac{1}{(4 \pi)^{\frac{D-1}{2}} \frac{1}{\Gamma(s)} \int_{0}^{\infty} K(t) \times \Theta(t) \frac{d t}{t^{1+\frac{D-1}{2}-s}}} \\
K(t)=\sum_{k} e^{-t p_{k}^{2}}=\frac{\ell}{\sqrt{4 \pi t}} e^{-t M^{2}}(1+\delta K(t)) \\
\Theta(t) \equiv \sum_{n=-\infty}^{\infty} e^{-4 \pi^{2} n^{2} t / \beta^{2}}=\frac{\beta}{\sqrt{4 \pi t}}\left[1+2 \sum_{n=1}^{\infty}\left(e^{-\frac{\beta^{2} n^{2}}{4 t}}\right)\right]
\end{gathered}
$$

