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The definition of quantum and 
classical tomogram

𝒲Q (X, μ, ν) = ∫ W(q, p)δ(X − μq − νp)dxdp

𝒲C (X, μ, ν) = ∫ f(q, p)δ(X − μq − νp)dq dp

Both definitions are Radon transform respectively 
of a Wigner function and a Boltzmann function. 

They define quantum and classical states with the same  
class of functions



The definition of a tomogram 
 from a wave function

𝒲 (X, μ, ν) =
1

2πℏ |ν | ∫ ψ (y) exp [i ( μ
2ℏν

y2 −
X
ℏν

y)] dy

2

.

which equivalent to the previous definition  
in terms of Radon transform



Interpretation of the tomogram 
as probability functions

|ψ(q) |2 | ψ̃(p) |2

|ψ(X, μ, ν) |2

X = μq + νp

ψ(X, μ, ν) = ∫ ψ(q)e−iG(q,X)dq

G (q, X) = −
μ
2ν (q2 + X2) +

qX
ν



Fundamental condition for the 
tomogram

∫ 𝒲(X, μ, ν)dX = 1



Construction of the classical de 
Sitter tomogram

f(q, p) = δ (−4p2 + λq − 1)
𝒲 (X, μ, ν) = ∫ δ (−4p2 + λq − 1) δ(X − μq − νp)dqdp

=
1

2 |μ |
1

λ2ν2

16μ2 + λX
μ − 1



Classical and quantum de Sitter 
tomograms 

𝒲class. =
1
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μ − 1
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The universe in a tomogram
Previous results 

We found the relation between the quantum and classical 
tomograms for a de Sitter universe 

The classical limit ( ) coincided with the limit . 
Ruling out the Hartle and Hawking and Linde models 
which have no classical limits 

Only the classical limit of the  Vilenkin model coincided 
with the classical one.

ℏ → 0 λ → 0



But  suggests that also the HH and Linde models can 
have a quasi-classical limit and can be viable cosmological 
models to be studied  

 Therefore the decay of the cosmological constant can be 
responsible of the  quantum to classical transition More 
results were considered with a generic potential in the 
Lagrangian 

It was found that in many models the decay of the 
cosmological constant produced the transition to a classical 
state 

But this is not general

λ ≠ 0



Extending to models with perfect 
fluids

In this lecture I explore the properties of the tomograms when in 
quantum cosmological models with a cosmological fluid 

To this aim the fluid is represented in terms of velocity potentials 

One of these potentials is thermasy, we will see its properties and its 
role in the formulation of the Wheeler-De Witt equation 

We will take some well-knows solutions and derive its tomograms 

Finally we will consider the properties of the tomograms near  
and see how the initial singularity is avoided in the tomographic 
formulation at any time.

a = 0



First principle of 
thermodynamics

 Π =
U

Nm
n =

n
V

ρ0 =
Nm
V

= mn ρ = ρ0 (1 + Π)

δq ≡ Tds = dΠ + pd
1
ρ 0

μ =
dρ
dρ0

=
ρ + p

ρ0
= 1 + Π +

p
ρ0

.

dp = ρ0dμ − ρ0Tds .

p = p(μ, s)

  s is the specific entropy T is the temperature



Equations of state

ρ0 =
μ1/w

(1 + w)1/w
exp (−

s
w )

ρ =
μ1+1/w

(1 + w)1+1/w
exp (−

s
w )

p = λ
μ1+1/w

(1 + w)1+1/w
exp (−

s
w )

p = wρ



Fluids in general 
relativity

S = ∫M
d4x −gR + ∫∂M

d3x hhabKab + ∫ 16πG −gpd4x

Ua = μ−1 (∂aφ + ϑ∂as + αA∂aβA) .

−μ2 = gab (∂aφ + ϑ∂as) (∂bφ + ϑ∂bs . )
Introduced in General Relativity by B.F Schutz 



Fluids in General Relativity

B.F Schutz PRD 2 (1970), 2762,  
B.F. Schutz PRD 4 (1971), 3559  

J.D. Brown  CQG 10(1993) 1571 (Alternative 
lagrangians and analysis of the potentials)



Fluids 

V.G. Lapchinskii and V.A Rubakov Teor. Mat. 
Fiz. 33 (1977), 364 

N. Lemos JMP 37(1996), 1449 

F.G Alvarenga & al. GRG 34 (2002), 351 

A.B. Batista &al. PRD 65 (2002), 063511



Equations 

Gab = 8π ((ρ + p)UaUb −
1
2

gabp)
∇a(ρ0Ua) = 0

Ua∂as = 0

Ua∂aϑ = T

Ua∂aφ = − μ



FLRW universe

ds2 = σ −N2dt2 + a2(t)( dr2

1 − Kr2
+ r2dθ2 + r2 sin2 θdϕ2)

σ = 1/6

L = NKa −
a ·a2

N
−

16πGNa3

36
p

Ua = (−1,0,0,0) Ua = (N,0,0,0)

μ =
·φ + ϑ ·s

N p = λ
μ1+1/w

(1 + w)1+1/w
exp (−

s
w )



The action and the momenta

S = ∫ (NKa −
a ·a2

N
+ 16πG

N− 1
w a3

36
w

(1 + w)1+1/w ( ·φ + ϑ ·s)1+1/w exp (−
s
w )) dt

pa =
∂LT

∂ ·a
= − 2

a ·a
N

pφ =
N− 1

w a3

36
1

(1 + w)1/w ( ·φ + ϑ ·s)1/w exp (−
s
w )

pϑ = 0 ps = ϑpφ



Hamiltonian formalism

ℋ = NH = N (−
p2

a

4a
− Ka +

1
(16πG)

pλ+1
φ

a3λ
exp(s))

τ = 16πG ps p−(w+1)
φ exp(−s)

pτ =
1

(16πG)
p(w+1)

φ exp(s)

φ̄ = φ − (w + 1)
ps

pφ

pφ̄ = pφ



Hamiltonian

ℋ = NH = N (−
p2

a

4a
− Ka +

pτ

a3w ),

ADM Hamiltonian= N x Superhamiltonian

ℏ2

4a
∂2Ψ
∂a2

− KaΨ =
iℏ

a3w

∂Ψ
∂τ



What is ?τ
τ = 16πG ϑ p−λ

φ exp(−s)

= 16πG ϑ [ a3

36
ρ0 exp (−

s
w )]

−w

exp(−s)

= (36)λ16πG ϑ [ a3

36
ρ0]

−w

∝ constant × η
  is the thermasy up to a constant 

In a universe with radiation it is  the conformal time 
τ



The concept of thermasy
Thermasy  was introduced by Van Dantzig  

Infinitesimally it is                        

The thermasy has convective derivative equal to  and together  with 
the specific entropy describes a convective motion in terms of 
velocity potentials 

Relativistic thermasy  (the line element or the proper time 
instead of time) 

D. Van Dantzig  "On the phenomenological thermodynamics of 
moving matter" Physica VI (1939) 673-704 

ϑ

dϑ = Tdt ·ϑ = T

T

dϑ = Tds



Thermasy as matter time

Kijowski and coworkers called it “matter time”  

They interpreted it as the time delay of a particle under brownian 
motion with respect to the time of propagation of a fluid along the 
flux lines 

Measure of temperature from the variation of the decay time of a 
fluid of radioactive atoms 

Kijowski J, Sm6lski A and G6mick A 1990 Phys. Rev. D 41 1875

A particle accelerated in a vacuum should have a different thermasy 
with respect to a particle in a uniform motion due to the Unruh effect.



Thermasy in a radiation universe
P =

1
3

ρ .

ρ =
π2

30
g(T )T4

s̄ = ns =
2π2

45
g(T )T3

∇aTab = 0 a−3T
∂
∂t ( ρ + p

T
a3) = a−3T

∂s̄a3

∂t
= 0.

e.g. S. Dodelson, Modern Cosmology, Amsterdam, Netherlands: Academic Pr. (2003) 440 



Thermasy and conformal time

T ∝
1
a

.

ϑ = ∫ kTdt ∝ ∫
dt

a(t)
= η

In conclusion in a radiation universe thermasy 
is proportional to the conformal time and so  

is . The Wheeler De Witt is a legitimate  
Schroedinger equation

τ



The Wheeler De Witt equation

The Wheeler-DeWitt equation  

 

can be expressed  in different equivalent   ways

ℏ2

4a
∂2Ψ
∂a2

− KaΨ =
iℏ

a3w

∂Ψ
∂τ



Wheeler DeWitt equation expressed 
in terms of the thermasy

ℏ2

4a
∂2Ψ
∂a2

− KaΨ =
iℏ

a3w

α
kT

∂Ψ
∂t

ℏ2

4
∂2Ψ
∂a2

− Ka2Ψ =
iℏ

a3w−1

α
kT

∂Ψ
∂t

or

ℏ2

4a
∂2Ψ
∂a2

− KaΨ =
iℏ

a3w
α

∂Ψ
∂ϑ



Modified Wheeler DeWitt equation

Notice that  for  the equation looses the 
time dependence. I.e. the Wheeler De Witt takes its  

usual form which derives from this singular condition      

T → ∞

ℏ2

4
∂2Ψ
∂a2

− Ka2Ψ + a f(Λ, ϕ, . . . )Ψ =
iℏ

a3w−1

α
kT

∂Ψ
∂t

ℏ2

4
∂2Ψ
∂a2

− Ka2Ψ + a f(Λ, ϕ, . . . )Ψ = 0

T → ∞



The Wheeler De Witt equation in a 
radiation dominated universe

ℏ2

4a
∂2Ψ
∂a2

− KaΨ =
iℏ
a

∂Ψ
∂η

We have seen that in a radiation universe  (w =
1
3τ ∝ ϑ ∝ η

ℏ2

4
∂2Ψ
∂a2

− Ka2Ψ = iℏ
∂Ψ
∂η

or

ℏ2

4
∂2Ψ
∂a2

− Ka2Ψ = iℏ a
∂Ψ
∂t

using the definition of conformal time.  dη =
1
a

da



Conditions for the solutions

Extended minisuperspace (Lapchinski-
Rubakov)  

Hermitian operators when  

Square integrable wave functions 

This imply that also the tomograms are well 
defined

−∞ < a < + ∞

0 < a < + ∞



Boundary conditions
∂Ψ
∂a

a=0

= c Ψ(0), c ∈ (−∞, + ∞)

∂Ψ
∂a

a=0

= 0, c = 0

Ψ(0) = 0, c = + ∞



Lapchinski-Rubakov initial 
conditions

Ψ(a,0) = C exp (−
(a − a0)2

β2 ) − exp (−
(a + a0)2

β2 )
𝒲 (X, μ, ν,0) =

1
2π |ν |

A2(μ, ν)e−X2/2β̃

× exp ( −2Xa0μ
β̃2 ) + exp ( 2Xa0μ

β̃2 ) − 2 cos ( Xa0ν
ν2 + μ2β2 )

w =
1
3

−∞ < a < + ∞ (extended minisuperspace)



Time evolution and propagators

𝒲 (X, μ, ν, τ) = ∫ Π (X, μ, ν, τ, X′ , μ′ , ν′ ) 𝒲(X′ , μ′ , ν′ ,0) dX′ dμ′ dν′ 

Πosc. (X, μ, ν, t, X′ , μ′ , ν′ ) = δ(X − X′ )δ (μ′ − μ cos ωτ + ν sin ωτ)
× δ (ν′ − ν cos ωτ −

μ
ω

sin ωτ)
Πflat (X, μ, ν, t, X′ , μ′ , ν′ ) = δ(X − X′ )δ (μ′ − μ) δ (ν′ − ν − μτ)

Πantiosc. (X, μ, ν, t, X′ , μ′ , ν′ ) = δ(X − X′ )δ (μ′ − μ cosh ωτ + ν sinh ωτ)

× δ (ν′ − ν cosh ωτ −
μ
ω

sinh ωτ)



Evolution of the tomogram
We notice that for   

both  and  
tend to  then when the  

universe cools down one has

T → 0
Πosc. Πnonosc.

Πflat

× exp ( −2Xa0μ
β̃2 ) + exp ( 2Xa0μ

β̃2 ) − 2 cos ( Xa0(ν − μt)
(ν − μt)2 + μ2β2 )

𝒲 (X, μ, ν, t) =
1

2π |ν − μt |
A2(μ, ν)e−X2/2β̃



Conclusions
Tomograms are very useful to analyse the transition from quantum to classical universe 

They were studied only for a de Sitter universe 

Therefore it is necessary to extend the tomograms to more general models with material sources 

But revisiting the models with perfect fluids it appears that the fiducial time is  an effective time 
measurable with the clocks of the observers.  

In particular we found out that in a radiation dominated universe the Wheeler De Witt equation is 
a Schroedinger equation 

The tomograms that describe the initial state generalise the conditions for the absence of a 
singularity in any frame of the phase space.. 

Future work extend these results to models with cosmological constant and scalar fields 

Find general solutions with approximation techniques


