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Abstract
Here we show that the Gross—Pitaevskii equation (GPE) for Bose—Einstein con-
densates (BECs) admits hydrodynamic interpretation in a general Riemannian
metric, and show that in this metric the momentum equation has a new term
that is associated with local curvature and density distribution profile. In par-
ticular conditions of steady state a new Einstein’s field equation is determined
in presence of negative curvature. Since GPE governs BECs defects that are
useful, analogue models in cosmology, a relativistic form of GPE is also con-
sidered to show connection with models of analogue gravity, thus providing
further grounds for future investigations of black hole dynamics in cosmology.

(Roitberg & Ricca J. Phys. A: Math. Theor. 54, 2021)
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o Right-hand side:
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Gross-Pitaevskii equation (GPE) in Euler form

e Theorem (GPE in Euler form). GPE admits hydrodynamic
description in the form of an Euler equation, given by

where V ,U denotes the covariant derivative along itself and
H =U++ Q is the sum of classical and quantum potentials.
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Gross-Pitaevskii equation (GPE) in Euler form

e Theorem (GPE in Euler form). GPE admits hydrodynamic
description in the form of an Euler equation, given by

where V ,U denotes the covariant derivative along itself and
H =U++ Q is the sum of classical and quantum potentials.

Proof. Define u = V0 :

* re-write covariant derivative using Koszul’s formula, so that

|
VvwWV0=V,u=V <§\V9]2> ;
. take the gradient of 0:0 + %|V9‘2 =U+0.

e Corollary. The relation between GPE and hvdrodynamics is
one-to-one on any manifold with generic metric g .
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e Theorem (GPE in Navier-Stokes form). GPE admits hydrodynamic
description in the form of a Navier-Stokes equation

pOu+Vu)=—-Vo+V. -74E, (NS)

where V=0, § = (9/2m),02 , = (h2/4m2_),0 Hess(In p) ,
and £ is a density curvature tensor, £/ = —(h*/4m*)R*Op .
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description in the form of a Navier-Stokes equation
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Conservation law for momentum

o Theorem (Momentum conservation law). The momentum pu
associated with the hvdrodvnamic form of GPE satisfies the
following conservation law

O(pu) = -V - M+, (M)
where M = /\/l,-,-dxi A dx/ , Mi,' = D,‘j -+ Hij i Q,-j with
Dl‘j = PUU; > ub — ujdxj ’ Hij — ©8ij - g = th/(4m2)G
( G Einstein tensor) and X is explicit function of the geometry
of the manifold through the Ricci scalar R.
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hZ
The new term XY = ———=Rdp. breaks the standard form of

] 8m?
a conservation law.
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