XXIV SIGRAV Conference on General Relativity and Gravitation Urbino – 2021/09/08

Bayesian parameter estimation of stellar-mass black-hole binaries with LISA arXiv: 2106.05259 Phys. Rev. D 104, 044065

> Riccardo Buscicchio & A. Klein, E. Roebber, C.J. Moore, D. Gerosa, E. Finch, A. Vecchio

University of Birmingham Institute for Gravitational Wave Astronomy

LDC-1.5

mmmmm ,

Università di Milano-Bicocca Agenzia Spaziale Italiana

Agenzia Spaziale Italiana

The Mission(s) LISA: a bright (sources) future ahead

°,

LISA-L3 Mission proposal

credits: courtesy of LISA Data Challenge working group

Stellar mass black hole binaries

What we know? What we expect?

- Many detections, more to come $(O_{3}b - O_{4})$
- Evidence for aligned spins
- Evidence for unequal masses
- Signs for precession
- (No astrophysical foreground, yet)
- (No gravitational wave lensing, yet)
- (No eccentricity, yet)

Ultimate source

LIGO-Virgo Neutron Stars

Recap

- 1 dataset, 66 sources, known injected parameters
- SNRs<14 (22 with SNR>8)
- Circular
- Aligned spins
- 13<Chirp mass<55
- <u>Injected parameters, SNRs, merger time</u>
- 2.5 year long mission » orbital strain modulation
- 5 sources merging within LISA mission, (3 with SNR>8)
- 11-dimensional parameter space

And much more (see Challenge 2 - Sangria)

The Pipeline: BALROG

"A LISA Bayesian Parameter Estimation Routine for Tons of Objects, Simultaneously."

Focus on parameter estimation for:

- Multiple sources (simultaneously)
- Multiple source types: currently chirping and monochromatic binaries
- Python design, core Cythonized waveforms (see Klein A. 2106.10291 EFPE waveform for SOBBH)
- Interface with multiple samplers
- Fully containerized
- Built alongside LDC for noise generation, compatibility, testing, conventions

$$egin{aligned} &\ln\mathcal{L}(d\midm{ heta}) = -\sum_krac{\langle d_k-h_k(m{ heta})|d_k-h_k(m{ heta})
angle_k}{2}+~\mathrm{cons}\ &\langle a\mid b
angle_k = 2\int_0^{+\infty}\mathrm{d}frac{ ilde{a}(f) ilde{b}^*(f)+ ilde{a}^*(f) ilde{b}(f)}{S_k(f)}\ & ilde{X}_{1.5-\mathrm{g}}(f)pprox\left(1-e^{-4\pi ifL}
ight) ilde{X}_{\mathrm{RAA}}(f)\ &+~\mathrm{Clenshaw-Curtis quadrature to speed up waveform evaluation} \end{aligned}$$

Previous episodes Appeared previously in...

Multiple sources

Buscicchio & al. PRD.100.084041(2019)

DWD in Milky Way Satellites

Ő

Roebber, **RB** & al. ApJL, 894, 2, L15 (2020) Korol, **RB** & al. A&A 638, A153 (2020)

LDC-1.3 **Birmingham** submission: Verification binaries

Pipeline structure Brief summary of a 4-year long work

Handling excess multimodality

896 0

Handling evidence	e
(nested sampling)	

Handling injection

recovery

campaigns

K	$\log Z_{\mathcal{T}}$	$\log Z_{\mathcal{C}}$
1	-74.76 =	± 0.09
2	-78.37 ± 0.05	-78.30 ± 0.05
3	-81.82 ± 0.09	-81.66 ± 0.08
4	-84.58 ± 0.06	-84.2 ± 0.1

Model selection

Handling multiple sources, multiple source-type, <u>simultaneously.</u>

DWD in Milky Way Satellites

Roebber, **RB** & al. ApJL, 894, 2, L15 (2020) Korol, **RB** & al. A&A 638, A153 (2020)

Handling multiple flavours of TDIs

Bayesian inference (computationally)

Multi-stage process:

- Individual source PE, noiseless datasets, on 3.5 PN Taylor F2, restricted to aligned spins, circular binaries
 - >> Diagnosing sources' confusion, waveform mismatches +<
- Iterative PE with pre-determined recipe for prior adjustment on $\mathcal{M}_c, f_0, \sin b, l$ \gg Proxy for search-informed priors \ll
- Stopping criterion: informative, clean, non-railing, posteriors
 » After 3 iterations at most (1 for the SNR>8 "recovered") «
- Run on LDC-1 dataset

Bayesian inference (computationally)

Sources baby-sitting:

- All SNR 22 sources automatically processed
 >> The injection campaign manager worked well <
- A couple with SNR 7.9 ones were interesting, but unclean posteriors (see Section III.C of the paper). Flagged as undetected.
 >> SNR 8 is our choice <
- Source 5, 20 triaged, unbiased in single source dataset

 »> Confusion under investigation <

 Source 16 unconstrained mass difference, gives biased marginals in chirp mass (see also Toubiana & al. PRD.102.124037)
 ** Projection effect, PN-driven reparametrization gives milder biases <

Bayesian inference (parameter estimation)

Search surrogate

 $\delta \mu = \left(m_1 - m_2
ight) / \left(m_1 + m_2
ight)$ $A_L = (1+\cos \iota)/\sqrt{2D_L}$ $A_R = (1 - \cos \iota) / \sqrt{2D_L}$ optimally oriented $\psi_{L,R}=\phi_0\pm\psi$ $\chi_{1,\ell},\chi_{2,\ell}$ $l, \sin b = \mathcal{M}_c, f_0$

Priors uniform

0,0.9

twice the true distance of the

full space

Iteratively adjusted

The Good, the Bad and the Ugly (and where to find them)

Violins

22 sources recovered (SNR>8)

$$eta = \sum_{i=1}^2 \left(\mu_i + rac{75 \mu_j}{113}
ight) \mu_i \chi_{i,\ell}$$
 ,

Spin and mass ratio posteriors from higher PN terms

Big Table with posterior point estimates and computational <u>costs</u>

Bonus content

0

Eccentric precessing run: SNR 15, GW190521-like, precessing 17-dimensional space, recovered eccentricity down to 3×10^{-3}

time to merger <1h

>1 point in parameter space investigation ongoing... **Stay tuned!**

Where do we stand?

- Monochromatic sources (not this talk):
 - vastly tested and reliable for injection and recovery campaigns
 - successfully recovered LISA challenge white dwarfs verification sources
 - successfully recovered multiple ones, simultaneously

- Inspiralling sources (this talk):
 - successful recovery of challenge circular
 - successful recovery of an eccentric source (more to come..)

- Chirping sources and sgwb (hopefully future talk):
 - Joint noise-signal inference: glitches, better instrument (see Eleonora's talk, tomorrow)
 - IMR waveforms for SMBBH: the big bright guys
 - Blind challenge: the pandora's box

