
Truncated Power Series Algebra 
April 29, 2010,   Alex Chao 

 
Introduction 

 
In the study of nonlinear dynamics, high-order nonlinear maps are extremely useful: 
 
- To study long-term stability of particle motion (dynamic aperture) by tracking with 

nonlinear maps. 
 

- To extract various nonlinear dynamics quantities analytically (Courant-Snyder, Lie 
algebra, etc.) from the nonlinear one-turn map. 
 

But, regardless of the purposes, question is: How to generate these high order maps 
efficiently in the first place? 
 
One answer:  TPSA technique, first introduced for accelerators by M. Berz, 1989. Since 
then, a large number of computer codes/libraries were written using TPSA. 
 



TPSA is a powerful computation tool, not only for accelerators but also for any 
computational algorithm which relates some outputs to some inputs: 
 

                   
 
Once the algorithm is given, TPSA allows one to generate power series expressions of 
the outputs in terms of the inputs. The order of the power series Ω is limited only by 
memory space of a computer and is specified by the user.  
 
Note, however, that TPSA does not contain physics; it is a computational technique. 
 
 
 
 
 
 



What algorithms? The answer is any algorithm that calculates definitively the numerical 
values of Y once the numerical values of X are given. 
 
Examples 
-  Explicit functions 

 yi = yi (x1, x2,  … , xn)   
-  A computer code with X=(x1, x2,  … , xn)  as inputs, and Y=(y1, y2,  … , ym)  as 

outputs. This computer code can be 10,000 lines, and parallel-processing. 
-  Random number generation is included if it is definitive. 

 
This algorithm is a map X  Y. We want to approximate the map by a Taylor expansion 
up to order Ω, 

           
i.e.  a truncated Taylor map from X to Y. TPSA technique is a way to calculate the 
coefficients Cj once the original algorithm is specified. 
 
This nonlinear map then replaces the original algorithm (at least approximately). 



In accelerators, one might (but does not have to) have X =(x,x',y,y',z,δ) of a particle at 
some starting position in a storage ring. By following X to obtain Y=(x,x',y,y',z,δ) through 
one beamline element, we obtain a single-element nonlinear map.  By following X for 
one revolution, one obtains the nonlinear one-turn map.  
 
If you have a tracking program, TPSA allows you to extract one-turn Taylor map XY 
up to some order Ω (e.g. Ω=10). Subsequent tracking using this Taylor map is likely to 
be much faster than the original tracking code. 
 
Note that  
-  if the original program contains a bug, the TPSA would still work, but the resulting 

Taylor map contains the same bug. 
-  the original tracking code relates Y to X numerically, while TPSA map relates Y to 

X algebraically. 
- It is obvious that the coefficients Cj are related to the derivative of Y with respect to 

X. So TPSA really allows one to calculate the high order derivatives of the outputs 
with respect to the inputs, 



For example, you can calculate 

  
Using TPSA --  not easy to do for a 10,000-line tracking code! 
 
Consider a single input x and single output. Let y be expressed as a truncated Taylor 
series around a reference point x=a, 
 

 
 

TPSA will calculate all the derivatives of f(x) at x=a. Both Ω and a are specified by the 
user. 
 
Note the one-to-one equivalence between the function f(x) and the vector 

   
The vector, with Ω+1 coefficients, is the TPSA representation of the function. 



One could imagine calculating the derivatives numerically: 
 

 
 
but loses accuracy rapidly for high order derivatives. TPSA is so remarkable because it 
does not subtract two nearly equal numbers, and calculates high order derivatives to 12 
digits! 
 
Before TPSA, high order maps of magnet elements were obtained by solving the 
particle's equation of motion. This yielded long analytic expressions, and were limited to 
low orders (TRANSPORT 2nd order, MARYLIE 3rd order, COSY 5th order). TPSA 
makes this approach obsolete. 
 
After truncation, the Taylor map is generally nonsymplectic. This Taylor map needs to be 
symplectified. One way is to apply Lie algebra. The combined application of TPSA and 
Lie algebra revolutionized nonlinear dynamics research in accelerators in 1980's. 
 



TPSA 
 
Consider 

                   
  
Suppose we want to find the derivative f'(2).  
 

Method 1:  Do it analytically 

        
But this is not always doable. 
 
Method 2:  Do it numerically.  

 
But one loses accuracy quickly. 

 
To compute f'(2) using TPSA, let us first form a vector v=(2,1) and try to find f(v). The 
first component is 2 is because we want to compute f'(2). The second component is 
always 1.  



 

                                         
 
As we will establish later, the vectors are manipulated according to the rules: 
 

                  
 
Thus, 

                  
The two components in the final vector are miraculously equal to f(2) and f'(2)!  
 
Nowhere explicit expressions of f'(x) was used. Nowhere subtraction of nearly-equal numbers was executed. The 
fact that is possible is counter-intuitive, but has a deep mathematical origin. 



The simplest version of the TPSA technique is thus 
        

 
 
The secret of TPSA is contained in the two vector manipulation rules. How are those 
rules established?  
 
Step 1 
 

Consider the simplest case: the identity function f(x) =x. We of course want (14) to 
hold for this function. Let v=(α,β), then LHS = f(v) = v = (α,β). 
 
We want this to be equal to RHS = (f(a), f'(a)), but we know f(a)=a and f'(a) =1. 
This means we must choose the input (α,β) =(a,1). This is what we did. 
 
It is easy to show that the constant function f(x)=c satisfies (14). 

 



Step 2 
 
Suppose we now have two functions f(x) and g(x), each satisfying (14). We now 
want to establish a rule which allows the new function h(x)=f(x)+g(x) to satisfy 
(14) also.  

LHS = h(v) = f(v) + g(v) = (f(a), f'(a)) + (g(a), g'(a)) 
RHS =  (f(a) + g(a), f'(a)+g'(a)) 

Obviously h(x) satisfies (14) if and only if we establish the vector addition rule (12). 
 
We now know that all functions of the type f(x)=c+nx satisfy (14). 

 



Step 3 
 

With f(x) and g(x) satisfying (14), we now want h(x) = f(x) g(x) to satisfy (14). 
 
  LHS = h(v) = (f(a), f'(a)) (g(a), g'(a)) 
  RHS = (h(a), h'(a)) = (f(a)g(a), f(a)g'(a)+f'(a)g(a)) 
 
Thus we require the vector multiplication rule 
 

 (a1,a2)  (b1,b2) =  (a1b1, a2b1+a1b2) 
 
Take f(x)=g(x)=x   h(x)=x2 satisfies (14)   h(x) = xn satisfies (14) 

 
The two rules together then  All power series of x satisfy (14). 
 



We have thus established the TPSA for any arbitrary function which is expandable into a 
Taylor series. Just substitute v=(a,1) into f(v) and follow two simple rules to obtain f(a) 
and f'(a)! 
 
Note v=(a,1) is only the initial input of vector. Once inserted into f(v), it of course no longer has the 
form (a,1). 
 
How about a division rule? Answer: use multiplication rule to obtain (11). 

Let  , then 

 
 
 



Higher Orders 
 
Higher derivatives are obtained by higher order TPSA. 
 
To Ω-th order, we first form the vector v = (a,1, 0,0,... 0) with Ω+1 elements. We then 
demand: 

  
 
Following similar 3 steps as before, it is easy to establish the higher order sum and 
multiplication rules: 
 

 
 

 
A constant c is identified as (c,0,0, ... 0). 



The remarkable thing is that once these two rules are established, high order derivatives 
of an arbitrary function f(x) can be computed by substituting x by v=(a,1,0,0,...)   ---  no 
subtracting of nearly-equal numbers and no analytic calculation of derivatives. 
 
Once the high order derivatives are obtained, Taylor series expansion follows. 
 
 



Special Functions 
 
Is it really true that we only need two rules, addition & multiplication rules? What about 
special functions, e.g. ex?  
 
One can expand ex into a power series, then substitute x  v. But this power series is 
infinite series. 
 
We will use a trick to calculate ev exactly with a finite number of steps! 
 
The trick is to note that any vector whose first component is zero is a “small” vector, 

       
There are k zeros on the RHS. This means (0,x, x, x, …) raised to (Ω+1)-th power is exactly 
zero in TPSA. 
 



 Using this trick, we obtain 

   

 
 
All series terminate, and all can be evaluated readily by applying the two rules.  



 
 
Multiple input and output variables 
 
So far we discussed a single input x and a single output y. We now generalize to multiple 
variables. 
 
Multiple outputs is trivial. Each output can be treated independently of the other output 
variables. We concentrate on just one of them and consider (x1,x2, ..., xn)    y. 
 
We need vectors of much larger dimension. To keep track of the multiple indices, while 
using minimum computer storage, is extremely complex for TPSA codes --- the code 
must work for arbitrary number of input and output variables, to arbitrary order Ω.  
 
We will illustrate only with the case (x1,x2)    y  
 
 



The TPSA requires that when input x1 is substituted by vector v1 and x2 by v2, we want to 
obtain an output vector 
 

  
 
where a0,b0 are prespecified reference positions for x1,x2. All derivatives are to be 
evaluated at (a0,b0). 
 
For (51) to hold for the two identity functions y(x1,x2)= x1 and y(x1,x2)= x2, we must 
choose the initial vectors 
 

     



 
The vector addition and multiplication rules are 

  
 
To find a high order derivative, we substitute v1 and v2 into y(x1,x2), applying (53,54), and 
the output vector contains the result.  
 



Applications 
 

1. Consider (x,x',y, y',z,δ) at some starting location as inputs. Consider (x,x',y, y',z,δ) of 
one turn later as outputs. A nonlinear Taylor map is then obtained. This map can be 
used to track particles, or to calculate some nonlinear dynamics quantities (such as 
tune shifts with betatron amplitudes, nonlinear chromaticities, nonlinear resonance 
strengths) analytically. Examples:  SSC 6-D 10-th order one-turn map, high order 
map over PEP-2 interaction region. 
 

2. Find the dependence of the one-turn nonlinear map on the strength S of some special 
magnet. Include S as one of the input variables. The map obtained is a Taylor 
expansion in S in addition to the other input variables. Can be useful for example to 
study sensitivity to magnet errors. 
 

3. Consider strength S of a quadrupole in a lattice design as one input variable. This 
allows varying S to match the β-functions or the betatron tunes if they are chosen as 
output variables. 
 

4. Other applications. 
 


