

The ALICE O² computing model for Run 3 and 4

Stefano Piano INFN sez. Trieste

ALICE physics goals for Run 3 and 4

- Heavy-flavour mesons and baryons (down to very low p_{T})
 - \Rightarrow mechanism of quark-medium interaction
- Charmonium states
 - \Rightarrow dissociation/regeneration as tool to study de-confinement and medium temperature
- Dileptons from QGP radiation and low-mass vector mesons
 - \Rightarrow χ -symmetry restoration, initial temperature and EOS
- High-precision measurement of light and hyper (anti-)nuclei
 - \Rightarrow production mechanism and degree of collectivity

CERN Yellow Report <u>arXiv:1812.06772</u>

Protons physics

Commissioning with beam Hardware commissioning/magnet training

Ions

From triggered Run 2 to un-triggered Run 3 and 4

- In Run 2 ALICE operated at Pb-Pb interaction rates ~7-10 kHz (inspected ~1 nb⁻¹) with trigger rate < 1 kHz for Central Barrel
- LHC plans to deliver 50 kHz Pb-Pb interaction rate after LS2
- ALICE plans for Run 3 & 4: collect 13 nb⁻¹ of Pb-Pb collisions at 5 TeV (of which 3 nb⁻¹ with reduced magnetic field)
- Main limitations at these rates:
 - Principal tracking detector, TPC has ~90 µs drift time + at least ~200 µs gating grid to collect the ion backflow
 - Trigger rate limited to ~3 kHz (< 1 kHz accounting for bandwidth in Run 2)
 - At high multiplicities (dN/d η ~ 2000 + pile-up) very low S/B for rare probes:
 - > Dedicated (HLT) trigger is not realistic
 - Use continuous readout at least for TPC (no gating grid), increase bandwidth
 - > Read out all events, store compressed data and inspect all events offline

March 16th, 2021

S. Piano - The ALICE O² computing model for Run 3 and 4

ALICE Raw Data Flow in Run 3

Distribution of timing info, heartbeat trigger

March 16th, 2021

March 16th, 2021

Data buffer for O² facility

- 100 PB raw capacity, RS erasure coded (level of security to be defined)
- Based on cheap JBODs, SATA drives, EOS managed

A Large Ion Collider Experiment

The Offline-Online framework (O²)

Visualization of 2 ms of 50 kHZ Pb-Pb data as expected in the ALICE TPC in LHC Run 3

- Basic processing unit: Time Frame (~10 ms of data ~500 collisions @ 50 kHZ Pb-Pb)
- Whole TF reconstructed in one shot
- In absence of triggers (reference for drift-time estimate) z position of clusters is not defined

O² software framework

Based on ALFA platform: common project of ALICE and FAIR

Key features:

- Message-queues based parallel processing done by separate devices (processes)
- FairMQ supports multiple transport engines (ZMQ, nanomsg) over different protocols (Ethernet, Infiniband, shared memory access)
- Technicalities of message exchange are hidden in the Data Processing Layer (DPL)
- DPL allows to wrap algorithms to Devices with particular Input and Output message type specifications.
- Workflows are built for group of Devices by automatic matching of their Inputs and Outputs

G.Eulisse, <u>CHEP2019</u> R.Shahoyan, <u>CHEP2019</u>

Outline of the TF synchronous stage processing

- The main aims:
 - Raw data reduction/compression to Compressed Time Frame (CTF), calibration data accumulation, QC
- The main tasks:
 - Full TPC clusterization and tracking (GPU)
 - Full ITS+MFT clusterization
 - Full FIT & ZDC reconstruction
 - Partial ITS tracking + ITS/TPC/TRD/TOF matching as much as needed for QC and calibration
 - Accumulation of data for offline calibrations (CCDB)
 - On-the-fly calibrations (e.g., TRD, TPC V-drift) with feedback for reconstruction of following TFs
 - \circ Entropy and data reduction, entropy compression (ANS), writing CTF

QC within EPN devices and on dedicated QC servers

TPC average distortion calibration

lon particle track electrons ~ m lon GEM GEM foil ~50µm

• lons belonging to 8000 different PbPb collisions!

GEM detectors will release in the TPC active area **slow ions** that can **distort the electric field that guides the electrons**

average "shift" (distortion) and fluctuations in the positions of the reconstructed TPC clusters

Average distortions and distortion fluctuations need to be corrected **before the tracking is performed** (in Run 3 online only average corrections as a function of luminosity)

electron drift time ~ 100 µs

ion drift time ~ 200 ms

TPC data reduction

- TPC data rejection strategies:
 - A (conservative): reject only clusters of identified background / tracks loopers
 - B (aggressive): keep only clusters attached to or in proximity of identified signal tracks ($p_T > 50 \text{ MeV/c}$)
- Estimates for Pb-Pb:
 - Compression factor depends on IR
 - Expected average IR ~22 kHz
 - We plan to compress data according to the more conservative strategy A only in 2022
 - CTF average event size @ 22 kHz:
 - A: 2.85 MB/event
 - B: 1.90 MB/event
- In 2022 expected 2.7 nb⁻¹:
 - 2.0 x 10^{10} events x 2.85 MB/event \Rightarrow 57 PB

- Plan to install 100 PB raw disk space as O² buffer:
 - 57 PB + 20% contingency

D.Rohr, CHEP2019

CTF average event size

- TPC data rejection strategies:
 - A (conservative): reject only clusters of identified background / tracks loopers
 - B (aggressive): keep only clusters attached to or in proximity of identified signal tracks
- Estimates for Pb-Pb:
 - Compression factor depends on IR
 - Expected average IR ~22 kHz
 - We plan to compress data according to the more conservative strategy A only in 2022
 - CTF average event size @ 22 kHz:
 - A: 2.85 MB/event
 - B: 1.90 MB/event
- In 2022 expected 2.7 nb⁻¹:
 - 2.0 x 10^{10} events x 2.85 MB/event \Rightarrow 57 PB

Pb-Pb CTF Average Event Size 3.40 3.20 [MB] 3.00 Size 2.80 Event 2.60 2.40 Average 2.20 2.00 1.80 1.60 10000 15000 20000 25000 30000 35000 40000 45000 50000 Interaction Rates [Hz] No rejection Strategy A Strategy B Linear (No rejection) Linear (Strategy A) Linear (Strategy B)

- Plan to install 100 PB raw disk space as O² buffer:
 - 57 PB + 20% contingency

Generic software and GPU Benchmarks

- Vendor- / architecture-independent software:
 - All algorithms are written in generic C++, and can be dispatched to HIP, CUDA, OpenCL on GPUs or OpenMP on CPUs using small wrappers ⇒ good code maintainability
 - GPU libraries linked dynamically on demand ⇒ can distribute same binary software to CPU and GPU nodes
- Benchmarking of the synchronous software completed in August 2020:
 - GPU performance @ 50kHz Pb-Pb
 - ~1600 AMD MI50 and ~1100 NVIDIA Quadro RTX 6000
 - Compatible with our previous estimates <2000 GPU including 20% margin
 - GPU Memory optimization
 - 128 orbit TF needs 24 GB
 - EPN Full System Tests performed with 70 orbit TF
 - Validated processing rate of 1/230 of assumed rate at 50 kHz Pb-Pb (nominal 1/250)
 - Max. server memory consumption 280 GB and CPU load 44 cores (+20% in the final setup)

٠

٠

Generic software and GPU Benchmarks

250 servers totalling 2000 GPUs and 16000 physical cores

- Benchmarking of the synchronous software completed in August:
 - GPU performance @ 50kHz Pb-Pb Ο
 - ~1600 AMD MI50 and ~1100 NVIDIA Quadro RTX 6000
 - Compatible with our previous estimates <2000 GPU including 20% margin
 - **GPU Memory optimization** Ο
 - 128 orbit TF needs 24 GB
 - **EPN Full System Tests** Ο
 - Validated processing rate of 1/230 of assumed rate at 50 kHz Pb-Pb (nominal 1/250)
 - Max. server memory consumption 280 GB and CPU load 44 cores (+20% in the final setup)

ALICE asynchronous processing

Full reconstruction, full calibration for all detectors:

- Full correction of TPC distortions (nominal resolution), full calibration for all detectors
- TPC ITS tracks matching
- Tracks propagation to outer detectors (TRD, TOF)
- Global track fits
- Primary and secondary vertices
- PID hypothesis
- AOD as output

CCDB (conditions (database)

O²/EPN (Event Processing Nodes) 2000 GPU & 500 x 32 CPU cores

When the EPN farm is not (fully) used for synch. processing, it will be used for asynch. processing of the raw data stored on the disk buffer

- This ensures constant **100% duty cycle** of the EPN farm
- EPN will perform ~1/3 of the Pb-Pb asynchronous processing

Asynchronous code (almost) ready to run on CPUs, porting to GPUs under development

- Different relative importance of GPU / CPU algorithms compared to synchronous processing
- TPC part faster than in synchronous processing (less hits, no clustering, no compression)

ALICE Run 3 Computing Model

Grid Tiers will be mostly specialized for given role

S. Piano - The ALICE O² computing model for Run 3 and 4

Replication and deletion policy

- Due to a substantial increase in data volume, in Run 3, there will be only one instance of each raw data file (CTF) stored on disk with a backup on tape
 - EOS with erasure encoding provides 20% overhead in available storage space with high availability in large installations such as CERN
 - In case of data loss, we will restore lost files from tape
- The size of O² disk buffer should sufficiently accommodate CTF data from the entire period with contingency.
 - As soon as it is available, the CTF data will be archived on tape and partially moved to the T1 disks
- Given the limited size of the disk buffers in O² and Tier 1s, all CTF data collected in the previous year, will have to be removed before new data taking period starts.
- All data not finally processed during this period will remain stored on tapes until the next opportunity for re-processing arises: LS3
- The computing model foresees to have two copies of AOD data on disk from each asynchronous pass (load balancing and redundancy)
- One copy of the AOD per pass is planned to be archived to tape

Pb-Pb processing plan

Analysis facilities

- Collect ~10% of AODs on a few dedicated sites (AFs) that are capable of quickly processing locally large data volumes
- Goal: fast turnaround for cut tuning and task validation
- The AF needs to be able to digest more than 5 PB of AODs in a 12-hour period
- ~20000 cores and 5 \rightarrow 10 PB of disk on very-performing file system
- Run 2 analysis trains need on average 5 MB/s per job slot to be reasonably efficient
- (New O² analysis factor 3-10 higher event throughput)
- AF cluster file system able to serve 20,000 job slots at an aggregate throughput of 100 GB/s
- GSI is the first ALICE Analysis Facility (Wigner AF coming soon):
 - 2021 pledges 50 kHS06 and 4.7 PB
 - All worker nodes have a direct mount of the shared Cluster file system Lustre
 - To optimize the I/O throughput of the analysis jobs self developed XRootD Plugin: the data can access directly without the need to communicate with the external Grid services (AliEn catalogue) (expected 115 GB/s)

Run 1 and 2 ALICE analysis model

In order to offset the costs of reading data,

ALICE has as strong tradition of organized analysis (i.e., trains):

- Analysis happens on both ESD and AODs
- Users provide tasks, "wagons", organized in "trains"
- Trains run on the Grid
- Data are read only once per train, "wagons" get applied to these
- Data are kept in a generic C++ object store, backed by ROOT
- Slow sites / site issues dominate overall performance
- Data-access and de-serialization of complex object is major single core performance offender

G.Eulisse, CHEP2019

O² Analysis Model

The idea of organized analysis (trains) will stay. Improve on the implementation:

- Streamline data model, trade generality for speed: flatten data structures
- Recompute quantities on the fly rather than storing them: CPU cycles are cheaper
- Produce highly targeted ntuples (in terms of information needed and selected events of interest) to reduce turnaround for some key analysis: derived data sets

Key elements:

- FairMQ: Data processing in separate processes exchanging data via shared memory
- Apache Arrow as backing store for the messaging passing (interoperability)
- ALICE O² Data Processing Layer (DPL): translate the workflows to an actual FairMQ topology and taking care of parallelism

O² Analysis Challenge Outcome

- Novel O² analysis framework available
- Benchmark of real analysis in distributed environment:
 - So far 66 Physics Working Group tasks in O² repository.
 - Converted Run 2 data samples into new Run 3 data format
 - New organized distributed analysis "hyperloop"
 - About 200 trains ran since January 15th 2021
 - Grid: jobs mostly at CERN (>80%), some at CNAF
 - GSI AF: 2 core and 4 core
- Wrt Run 2 analysis: factor 3-10 higher event throughput (still being optimized)
 - no optimization for optimal core usage done yet
 - but multi core shows speed up
- Expected further framework developments and optimizations in the next months

O² simulation ecosystem

- Community collaboration: seek common solutions with FAIR experiments
 - Use FairRoot Monte Carlo classes as common blocks to build simulations in the VMC ecosystem
 - FairMQas the basis to build complex distributed systems based on messaging
- Novel requirements in Run 3 detector simulation:
 - Detector geometry changes; readout electronics changes (continuous readout); new data formats
 - Need to adapt to the availability of many-core systems and be able to make use of them efficiently
 - Chance of code cleanup; improvements in class and data layout; improvements in performance; etc.
- Simulating Pb-Pb collision is very demanding:
 - Up to 100k primaries in the collision to transport
 - Heavyweight resource utilization using standard single-core event-based simulation
 - ~O(GBs) of memory / event an ~O(h) of CPU time / event
- \Rightarrow event splitting and collaborative simulation parallelism
- \Rightarrow independent actors based on heterogenous multi-processing and message transfer

O² simulation ecosystem: 2 independent workflows

S.Wenzel, CHEP2018

O² simulation ecosystem: embedding in digitization^{ALICE}

O² simulation challenge outcome:

Embedding of Heavy-Flavour events into Pb-Pb background TF

- With MC-to-MC embedding, Geant4 simulation is comparable in speed to Geant3:
 - Geant4 slower transport but faster digitization
 - Embedding gain: ~3.9 (~4.7) with Geant3 (Geant4)
 - Same number of timeframes as Geant3 in 24 hours

HPC and cloud resources

- Thanks to the new O² simulation and reconstruction code (Run 3) possible to fully exploit the multi process features
- Significant progress has been made to incorporate HPC and cloud resources in the standard ALICE Grid workflows
 - Multicore queues at CERN used to test and benchmark the O² MC code
 - Intel based HPCs (Marconi @ CINECA, Cori and Lawrencium @ LBNL) were used for the O² MC challenge
 - Cloud resources delivery at CERN direct integration of Azure cloud as a Grid node
- Next steps:
 - porting the O² code to Power 9 and ARM platform

High-energy pp programme after LS2

- Target data samples:
 - $L_{int} = 200/pb$ with continuous data-taking and processing followed event skimming with selectivity of ~10⁻³
 - e.g., compared to Run 2 sample: x20 for high-multiplicity; x3000 for measurements that were based on minimum bias sample
 - $L_{\text{int}} = 3/\text{pb}$ at low field (0.2 T) with continuous data-taking and no event selection
- Proposed running scenario: 500 kHz interaction rate
 - Requires 5 full pp years at 50% LHC efficiency (in physics periods)
- Data processing strategy:
 - Standard processing chain (synchronous pass \rightarrow calibrations \rightarrow asynchronous pass) on O² facility, with event selection during asynchronous pass
 - Compressed Time Frames reduced by keeping the clusters associated to tracks that point to the primary vertex of a selected collision within ±30 cm in *z* (strangeness decays)

pp reconstruction requirements

- Synchronous pass: 12.5% of O² facility nodes
 - pp 500 kHz ~ 12.5% of Pb-Pb 50 kHz particle rate, for which the farm is dimensioned
- Asynchronous pass: 450 kHS06, to consume pp data (async + event selection) with backlog < 20 PB (1/3 of O² facility buffer, available during Pb-Pb reco.)
- Aim to reduce CPU load reduction using GPUs and further software optimization

Computing capacity used for pp asynch.: 450 kHS06

ALICE-PUBLIC-2020-005

Processing plan for 2022

Baseline scenario for Run 3 and 2022

Baseline Run 3 schedule has been defined:

- Experimental caverns closure on February 1st 2022
- Pilot beam in September 2021

2022 Running Conditions for Computing estimates including contingency

- ATLAS/CMS luminosity:
- ATLAS/CMS average pile-up: 35
- LHCb luminosity: <10/fb
- ALICE luminosity: <90/pb
- Running time pp: 6x10⁶ seconds
- Running time ions: 1.2x10⁶ seconds

Numbers assume 50% stable beam time and fast ramp-up to 2018 conditions

2022 Running scenario:

• Commissioning:

- pp collisions at 20-200 kHz during ramp-up (28d)
- pp collisions at 1 MHz for pp ref. exercise (3d)
- pp collisions at 5 MHz IR (eq. load of Pb-Pb@50 kHz)

• High-energy pp physics programme:

- \circ 135 days pp for physics in 2022
- 500 kHz interaction rate @ 45% efficiency
- \circ 35 / pb \Rightarrow 2.6 10¹² events
- Strong event selection during asynch. pass on O^2 facility (1.2%) ⇒ 3.1 10¹⁰ events on disk

• 24 days of Pb-Pb in 2022:

- \circ $\hfill 24$ days @ 50% LHC stable beams @ 95% ALICE eff
- 2.56 / nb \Rightarrow 2.0 10¹⁰ events

LPC

Resource Requirements for 2022

		2021					2022		
ALICE		Req.	Exp. Priority	C-RSG	Pledge	Pledge / Priority	Prev. Est.	Req.	Req. 2022 / Priority 2021
	Tier-0	471	403	471	471	17%	471	471	17%
СРИ	Tier-1	498	420	498	412	-2%	498	498	19%
	Tier-2	515	432	515	481	11%	515	515	19%
[kHS06]	Total	1484	1255	1484	1364	9%	1484	1484	18%
Disk [PB] Tape	Tier-0	45.5	36.3	45.5	45.5	25%	45.5	50.0	38%
	Tier-1	53.3	48.4	53.3	45.4	-6%	53.3	55.0	14%
	Tier-2	44.8	42.9	44.8	50.4	17%	47.0	49.0	14%
	Total	143.6	127.6	143.6	141.3	11%	145.8	154.0	<mark>21%</mark>
	Tier-0	86.0	50.3	86.0	86.0	71%	86.0	95.0	89%
	Tier-1	57.0	41.2	57.0	59.8	45%	57.0	63.0	53%
[PB]	Total	143.0	91.5	143.0	145.8	59%	143.0	158.0	73%

Resource estimates	CPU (kHS06)	DISK (PB)	TAPE (PB)
Previous estimates for 2022	1484	145.8	143.0
Requests for 2022	1484	154.0	158.5
Difference	0%	5.6% (8.2 PB)	10.5% (15.0 PB)

Between previous estimates for 2022 and the present requests for 2022:

- No change in CPU
- 5.6% increase in T0/T1s/T2s disk
- 10.5% increase in tape space
- 1/3 of CTFs will be archived to Tiers-1 tape, while 2/3 of CTFs to Tier-0 tape, as foreseen in Run 3 computing model

Resource Estimates for 2023

		2022	20	23	
ALIC	CE	Req.	Est.	Est. 2023 / Req. 2022	
	Tier-0	471	541	<mark>15%</mark>	
	Tier-1	498	572	15%	
CPU	Tier-2	515	592	15%	
[kHS06]	Total	1484	1705	15%	
	Tier-0	50.0	58.0	16%	
	Tier-1	55.0	63.0	15%	
Disk	Tier-2	49.0	56.0	14%	
[PB]	Total	154.0	177.0	15%	
	Tier-0	95.0	126.0	33%	
Tape	Tier-1	63.0	79.0	25%	
[PB]	Total	158.0	205.0	30%	

2023 Running scenario:

- Precise schedule still unknown
- Considered as upperlimit:
 - 130 days of pp in 2023:
 - pp collisions at 500kHz for high-energy pp physics programme
 - 28 days of HI in 2023:
 - 28 HI days dedicated to Pb-Pb collisions
 - These assumptions accommodate with some margin different possible scenarios:
 - pp collected at low field, additional short O-O and p-O runs
 - p-Pb, pp reference instead of Pb-Pb

Estimates for 2023:

- Moderate growth of CPU (+15% per year) and disk
- Strategy B helps to mitigate the needed disk space in tape:
 - +31 PB at T0, +16 PB at T1s
- A better assessment of the computing estimates for 2023 will be delineated for Autumn RRB

Expected growth of CPU and disk space in 2022-2023

------ 15% growth: annually compounded rate from 2018 along LS2

Expected growth of TAPE space in 2022-2023

- TAPE in 2022:
 - 66 PB @ T1s
 - 100.5 PB @ T0
- PLEDGED in 2021:
 - 59.8 PB @ T1s
 - 86.0 PB @ T0
- 75 PB needed in 2022:
 - 18.0 PB for commissioning
 - 57.0 PB for Pb-Pb
- Give flexibility to FA's to delay the deployment:
 - commissioning in February 2022
 - Pb-Pb in October 2022
 - Crucial to adopt strategy B in the following years 2023 to be considered as an upperlimit

Summary

- O² simulation and reconstruction framework can exploit all advantages
 - Parallelism and improved workload scheduling
 - Ready to run multicore GRID jobs and on Intel based HPCs
- Large effort in developing and realizing the Run 3 TPC synchronous reconstruction tasks for GPU platform
 - Vendor and architecture-independent software
 - 2000 GPUs are sufficient for continuous readout of Pb-Pb at 50 kHz (including a 20% margin)
- Porting of asynchronous reconstruction code to GPUs under development
- Software algorithms and updated computing model allow to fit into the standard Grid resource growth of CPU and disk space
- Steps of requests in 2022 for tapes, precise schedule for 2023 still unknown

Status of ALICE sites

A Large Ion Collider Experiment

ALIVE AND KICKING DESPITE COVID-19! Thanks a lot for your effort !!!