Goals della riunione


Goals per oggi:

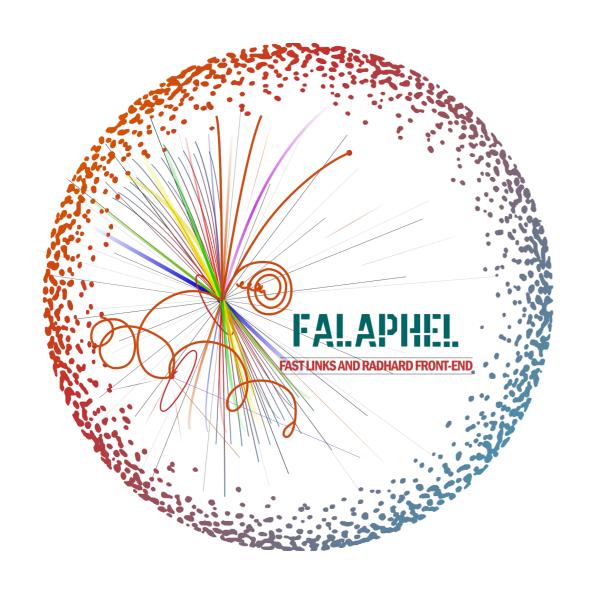
- Accesso alla tecnologia 28 nm TSMC HPC+
- Tool di progettazione
- Logo del progetto
- Report dai WG
- Milestone 1
 - Definizione delle specifiche

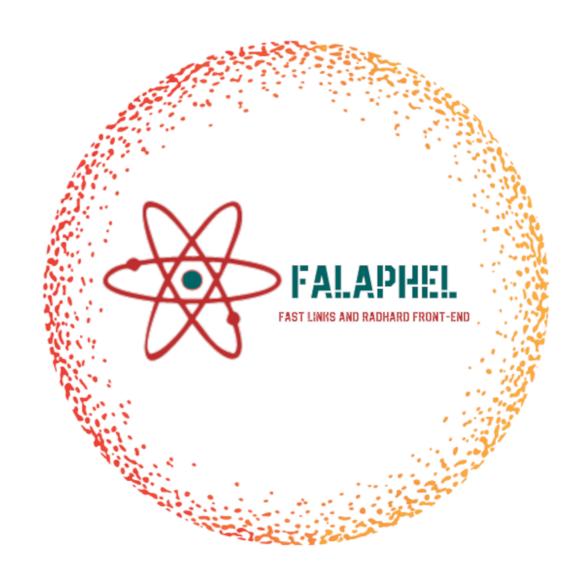
TSMC 28 nm HPC+

- Scelta obbligata per TSMC.
 - Esperienza pregressa di alcuni dei progettisti in FALAPHEL
 - Occorre mettere a comune le esperienze per alcuni BB
 - È possibile sottomettere i chip passando dal CERN.
 - Facciamo una programmazione interna

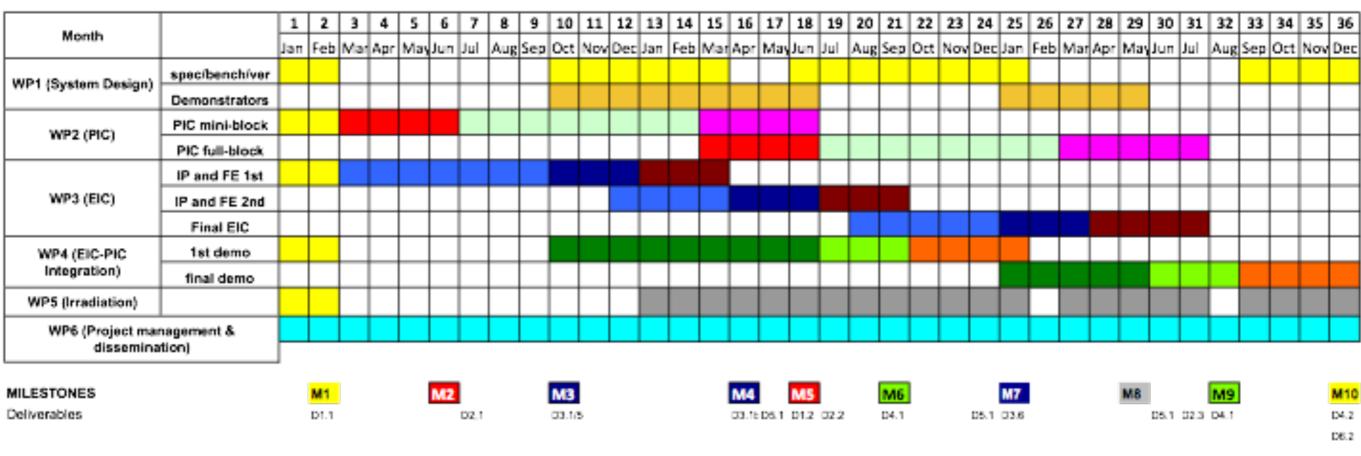
https://europractice-ic.com/mpw-prototyping/asics/tsmc/

Tool di progettazione


©Contratto Cadence con INFN. Ci permette di


- 1) usare la licenza a scopo non commerciale ai fini a) formativi b) ricerca fondamentale
 c) partecipazione a programmi di ricerca finanziati da governi nazionali e EU, d)
 partecipazione in programmi di ricerca all'interno finanziati da enti pubblici.
- 2) fabbricare da terzi disegni che creiamo
- ② 3) scambiare i disegni solo con <u>alcuni laboratori internazionali.</u> Eventuali collaboratori aggiuntivi devono esser autorizzati da Cadence a loro unica discrezione.
- A differenza del contratto precedente possiamo scambiare i disegni tra sedi INFN.
- Tuttavia non è permesso scambiare disegni con le Università, che tra l'altro hanno un contratto "educational"
 - Stante così le cose una soluzione "semplice" potrebbe esser quella di far progettare tutti (dipendenti e associati) su macchine INFN e poi integrare i disegni
 - Punto delicato (in fase di discussione) è l'eventuale rivalsa dell'INFN nei confronti di progettisti che infrangessero la licenza a scopi commerciali.

Logo


Due 'logo" sono stati proposti da Philippe

Gantt chart

Legenda

Specifications/benchmark/verification PIC design & layout PIC fabrication EIC design & layout EIC fabrication Integration test Integration design EIC-PIC Integration EIC test PIC test Irradiation

Milestones

- M1 (Definitions of the specs and KPI) (T0+2)
- M2 (Silicon Photonics PIC design for the submission of the mini-block chip fabrication) (T0+6)
- M3 (1st submission of the High Speed rad-hard block design) (T0+10)
- M4 (2nd submission of the High Speed rad-hard block design) (T0+16)
- M5 (Final Silicon Photonics PIC design for the submission of the full block chip fabrication) (T0+18)
- M6 (First integration EIC+PIC) (T0+21)
- M7 (Final, large area EIC submission) (T0+25)
- M8 (Qualification of rad-hardness of PIC and EIC) (T0+29)
- M9 (Final demonstrator integration) (T0+32)
- M10 (Final demonstrator qualification) (T0+36)

Assegni

A d R #	T y p e	Un it	Mon ths	Research Topic	Bandito/ Partenza	Vincitore
1	J	PI	30	PIC design and test. PIC-EIC 2021 integration and test		
2	S	PI	24	Driver design. PIC-EIC integration and test	2020/2021	G. Ciarpi
3	J	PI	12	PLL/CDR design and test	test 2022	
4	J	PV	30	DAC design and test	2020/2021	
5	S	PV	12	FE design, test and integration in the demonstrator	n in the	
6	J	P D	12	Irradiation tests and analysis	2022	

WP Structure

Table 3. Work Packages.

WP	Topic	Leader	Unit	Areas of work
1	System Design	Luigi Gaioni	INFN Pavia	Demonstrator design, system specifications and key performance indicators
2	Silicon Photonics	Stefano Faralli	Scuola Superiore S. Anna of Pisa	PIC blocks, Ring-Resonator Modulator, MachZehnder Modulator, WDM and SDM
3	Electronics	Gianluca Traversi (focus FE) and Guido Magazzu (focus IP cores)	INFN Pavia INFN Pisa	Serdes, Driver, PLL/CDR, DAC, Bandgap, Front-End
4	EIC-PIC Integration	Sergio Saponara	University of Pisa	Packaging and integration, thermal studies, prototyping and fabrication
5	Radiation hardness	Serena Mattiazzo	INFN Padova	Tests with X-rays, Heavy Ions, protons, neutrons
6	Project management and dissemination	Fabrizio Palla	INFN Pisa	Resource management, planning and coordination. Dissemination and exploitation of the results