



1

# Timespot1

## A CMOS 28-nm ASIC for tracking applications

### A. Lai – INFN Cagliari

On behalf of the TimeSPOT team

Adriano Lai - INFN Cagliari



# F/E solutions 1: Si-Ge

Improved discrete components **Si-Ge BJT** allows almost reaching the theoretical performance...

G.M. Cossu – INFN Cagliari



### ... Drawbacks:

- High consumption (mW/channel) 1.
- No integration (few wire-bonded channels) 2.

#### Integrated 130 nm BiCMOS (Si-Ge):

best performance in speed, relatively scarce integration capabilities, not duly characterized against radiation

4 chs





rise time  $t_r$  = 100 ps

2



### **F/E solution 2: CMOS** and our TimeSPOT ASIC



- Integrated CMOS as important limitations: smaller  $g_m$  of the input stages (smaller gain and BW wrt Si-Ge BJT): difficult to reach  $t_r < 1-2$  ns
- Integration is expensive in time and money: analogue designers tend to be conservative in implementing front-end solutions

Present pixel front-end designs are based on a traditional scheme: CSA with telescopic cascode input stage and Krummenacher feedback (e.g. RD53 ASIC, CMOS 65-nm, ATLAS-CMS). In **Charge Sensitive** approaches this is an optimal solution (compact, stable, **low consumption**) **In high time resolution applications this is not the ideal solution for timing performance: sensor speed is not fully exploited** 

A new scheme (TimeSPOT, CMOS 28-nm): CSA inverter input stage, which sums-up the  $g_m$ 's of 2 input (N and P) MOS

- →  $t_r$  reduction (<2 ns wrt  $\approx$  10 ns of previous solution)
- $\rightarrow$  BW increase + negligible Gain reduction by GBWP effect
- → Time jitter reduces by increasing power and do not saturates as in previous (cascode) version



Time jitter vs current consumption of the CSA stage (CMOS 28-nm). Red curve: schematic simulation. Blue curve: postlayout simulation after parasitics extraction.

Adriano Lai - INFN Cagliari



# Timespot1: Analog Front End - 1









#### **Post-layout simulation results**

| Pwr regime             | nominal | high |
|------------------------|---------|------|
| Pwr/channel [µW]       | 18.6    | 32.9 |
| Slew rate [mV/ns]      | 250     | 360  |
| $Z_{in}[\Omega]$ in BW | 23k     | 23k  |
| Gain [dB]              | 93      | 93   |
| RMS noise [mV]         | 3.9     | 3.8  |
| BW [MHz]               | 311     | 455  |
| Jitter [ps]            | 15.6    | 10.5 |

Adriano Lai - INFN Cagliari





## **High resolution – "low" consumption TDC** based on DCO and a Vernier architecture



To maximize sustainable rate, **1 TDC per pixel channel** has been integrated

Maximum input signal TDC rate = 3 MHz 24 bits output word (ToA + ToT) serial @160 MHz



#### Time of Arrival

| ТоА | LSB [ps] | σ [ps] |
|-----|----------|--------|
| MIN | 6        | 2      |
| ТҮР | 12       | 3,74   |
| MAX | 12       | 4      |

#### Time over Threshold

| тот | LSB [ns] | Bits |
|-----|----------|------|
| MIN | 0.75     | 8    |
| TYP | 1.10     | 8    |
| MAX | 1,18     | 8    |

#### **Power consumption**



The TDC gives the phase of the signal wrt the master 40MHz clock The TDC and the counter use the same DCO-generated Clk (~1 GHz)

|             | Internal Pwr<br>[µW] | Switch Pwr<br>[µW] | Leak Pwr<br>[µW] | Tot Pwr<br>[µW] |
|-------------|----------------------|--------------------|------------------|-----------------|
| IDLE        | 12.2                 | 4.8                | 3.7              | 20.7            |
| Calibration | 338                  | 211                | 3.7              | 552             |
| DAQ 3MHz    | 101                  | 69.5               | 3.6              | 175             |
| DAQ 1MHz    | 40.4                 | 25.3               | 3.7              | 69.3            |
| DAQ 500kHz  | 26.6                 | 15.2               | 3.7              | 45.5            |
| DAQ 100kHz  | 15.1                 | 6.9                | 3.7              | 25.7            |



## **Timespot1 ASIC architecture**

A prototype 28-nm CMOS ASIC Reduced size with a full set of functionalities



- **1024 channels**, each equipped with Analog Front End and TDC
- A group of 256 channels is readout by a **ROT** (Read Out Tree) that addresses incoming data to 2 serializers that drive a LVDS driver each, sending data out @1280Mb/s
- There are 10 DACs giving Voltage references to the Front-End cells
- Different clock generator (PLL and DCOs) are implemented to give different clock sources for the circuit, with different jitter performances, to study the jitter influence on the time resolution
- All the chip is controlled/configured through I<sup>2</sup>C interfaces



Timespot1 ASIC 28-nm CMOS

Submitted mid October 2020, Tests starting

INFN Cagliari, Milano, Torino (Bergamo: LVDS drivers)

Analog row (16x2 AFE)

Digital row: 16x2 TDC + Controls, Conf. registers, I<sup>2</sup>C I/F)

Analog (service) column:

- 1 BandGap
- 5 DAC sigma-delta (producing analog levels used by pixels)
- Programmable bias cell (for power consumption)
- bias replicas with source followers.

LVDS driver



## **Timespot1 ASIC** *Main characteristics*

6 mm<sup>2</sup> – MPW run. Sensing area ~3 mm<sup>2</sup>. 52 pins (staggered)

32x32 pixels. Pitch 55 µm (Timepix compatible). **Modular extendable architecture** 

Each pixel integrates the Analog F/E ( $50x15 \mu m^2$ ) and 1 TDC ( $50x31.5 \mu m^2$ )

Full chain  $\sigma_t < 15 \text{ ps}$  (after layout)

The core matrix is TSV-ready and 4-side buttable thanks to a RDL

Max pixel rate is 3 MHz

Max ASIC readout rate is 200 kHz @ 10.24 Gbps (strongly output pad limited)

Power  $\approx$  45  $\mu$ W/channel (<1.5 W/cm<sup>2</sup>)

9



### **Towards the Timespotter**® The final demonstrator



#### **TS1-PCB** characteristics

- 120x80 mm<sup>2</sup> size
- 640 MHz Clk. 4 options: external, internally generated x3 (useful for internal jitter measurements)
- 5 Separated supplies (D, A, IO, DCO, DAC)
- Hybrid supply up to 200 V
- Slow control by I<sup>2</sup>C
- 8 buffered LVDS serial outputs
- Simplified readout protocol and data format:
- IDLE byte (AB = 10101011)
- START byte (E5 = 11100101) +
- 5 DATA bytes

Conceived for both ASIC tests and the demonstrator setup with the hybrid on-top

INT ONE ONE ON

A REAL PROPERTY.



- 1. In our case the mechanics will be largely simplified, mainly using COTS components (e.g. Thorlabs).
- 2. Under evaluation: *a*) inclusion of an external time reference; *b*) cooling box.
- 3. Foreseen also (backup/complementary solutions): Timepix4\* readout, 8x80 strips (see slide 31).

\*ready for bonding @IZM

10