Trends for a tracker of the next decades

(one or two?)

Run5, LHCb (and others)

- Space resolution: O (10 µm)
- Radiation hardness: \approx 10¹⁷ 1 MeV n_{eq}/cm² (sensors) and > 1 Grad (electronics)
- Time resolution: < 50 ps per pixel (also after irradiation), < 20 ps per track
- Real time track reconstruction algorithms and fast read-out (detector data throughput > 10 TB/s)

 \rightarrow Pixel size marginally reduce

- \rightarrow High time resolution per pixel
- \rightarrow Huge data throughput
- \rightarrow Higher event complexity \rightarrow event pre-processing?

High density of functionalities (intelligence on detector), keep power consumption per pixel to a minimum (1.5-2W/cm²), high system integration

 \rightarrow System approach: the tracker as a whole

conceived to address the requirements above.

Two tracking religions: **Hybrid vs Monolithic**

Benchmarks

Time resolution	High (<30 ps)	Time resolution	Poor (ns, but R&D ongoing, FastPix)	
Space resolution	High (10 μm)	Space resolution	High (<10 μm)	
Power Consump.	High to moderate (<2 W/cm ²)	Power Consump.	Moderate	
Material budget	Moderate (<0.5% X ₀ , NA62 GTK)	Material budget	Conceptually Minimum	
Rad hardness	High (>10 ¹⁶ n _{ea} /cm ² , ATLAS 3D sensors)	Rad hardness	Moderate (≈10 ¹⁵ n _{eo} /cm ²)	
Integration of funct.	Conceptually Maximum	Integration of funct.	Modest	
Cost	High	Cost	Moderate	
Strength	Can maximize technology performance	Strength(s)	Conceptually elegant, can be	
	at each stage		accessible on large industrial scale	

3D (MEMS) sensors

- Time resolution ≈ 20 ps at room temperature (not irradiated), dominated by F/E.
- 3. Radiation hardness $\approx 10^{17}$ n_{eq}/cm^2 (Columns).

Already demonstrated by experimental tests

TCAD simulations. Vbias = – 150 V

trench electrodes: SEM image from TimeSPOT production batch#2 (Dec 2020)

Results on 3D-trench pixels

E THE ROOM ON ONE ONE ONE

Time resolution of 3D-trench silicon pixels with MIPs (test-beam & lab) at room temperature

(ref. Intrinsic time resolution of 3D-trench silicon pixels for charged particle detection, 2020 JINST 15 P09029)

PSI π M1, π^+ beam, 270 MeV/c

Insight: Tails in the ToA distribution

A consequence of 3D sensitivity to geometry

Double pixel vs marginal area (\approx 21% of total area)

	Vbias [V]	$\sigma_{\scriptscriptstyle core}[{\sf ps}]$	RMS [ps]	FWHM [ps]
ouble pixel + marginal area		19.9±0.2	65.1±0.2	36
Double pixel	-50	18.8±0.2	27.0±0.1	36
Marginal area only			151±1	216
Double pixel + marginal area	-100	17.8±0.2	61.4±0.2	36
Double pixel		16.9±0.1	23.9±0.1	36
Marginal area only			103±1	180
Double pixel + marginal area	-150	17.1±0.2	57.5±0.2	36
Double pixel		16.7±0.1*	22.9±0.1	36
Marginal area only			87.3±0.7	156

*to be compared with experimental $\sigma_{t,core}$ = (18±0.2) ps

Total charge Collection time [ps]

Tails are not intrinsic but strictly depend on the particular geometry tested at the PSI test-beam

X [um]

35k 270 MeV/c π^+ deposits

Laser pixel scan

A measurement of the intrinsic sensor response

•

- Average of 500 waveforms for each position to remove the electronic noise and then perform the signal **amplitude** and **Time of Arrival** measurements
- Scan step 1 µm
- Sensor bias 100 V

Alcune considerazioni su costi di R&D e di produzione Sensori ed elettronica

- La comunità HEP può avere scarso impatto sul mercato mondiale della sensoristica e della µ-elettronica
- I costi di sviluppo e produzione crescono enormemente a causa della scala relativamente piccola della nostra comunità
- Andare all'R&D sulla grande scala (necessario per l'equipaggiamento degli apparati) richiede vari passi di Engineering Run su grande area e ad alto costo (1 M€/run)
- → Per quanto riguarda la µ-elettronica massimizzare la massa critica (dentro l'INFN e oltre), con pochi sviluppi general purpose
- → Per quanto riguarda la sensoristica a stato solido: difficile decifrare il futuro. Riguardo al breve termine creare dei centri di sviluppo e produzione proprietari della HEP (@INFN?!?), stile FBK-CNM ma che funzionino (cfr. Stanford, BNL...)

