TF1 Gaseous Detectors

Convenors: <u>Anna Colaleo (INFN Bari)</u>, Leszek Ropelewski (CERN)

Members: Klaus Dehmelt (Stonybrook), Laura Fabbietti (TUM Munich), **Barbara Liberti (INFN Roma),** João Veloso (Aveiro)

Panel coordinator for TF1 area: Silvia Della Torre

TF1 Gaseous Detectors Symposium April 29th https://indico.cern.ch/event/999799/

ECFA Detector R&D Roadmap TF1 Gaseous Detectors Symposium

Technologies: overview, limitations and perspectives.

- o MPGD: GEM, Micromegas, THGEM, uRWELL, and other ongoing developments
- \circ RPC, MRPC, and other ongoing developments,
- \circ Drift chambers, straw tubes, TGC, CSC, and other wire chambers
- \circ PID: TPC, TRD, RICH and other large area detectors

Future applications.

- $\ensuremath{\circ}$ Tracking and muon detection at future colliders
- o TPCs at future lepton and lepton-hadron colliders (TPCs, drift chambers, large volume gaseous detectors)
- Nuclear physics applications (tracking, extremely low mass detectors, photon detection, TRD, neutron detection)
- o Recoils imaging for DM, neutrino, and BSM physics applications (TPCs variations, optical readout)
- \circ Semi-digital calorimetry (RPC, MPGD) at future colliders

Challenges and new developments.

- \circ Detector stability (ageing, discharge issues) and rate capability: resistive electrodes
- \circ Novel readout electrodes, optical readout, hybrids with ASICS
- \circ Precise timing detectors
- o IBF, photocathode stability and alternatives (including solid converters and nanotech)
- Precision manufacturing techniques (electrical and mechanical properties of detector components), additive manufacturing and new materials (low mass, radio-purity)
- Eco gas mixtures and mitigations procedures for GHG gas (recirculation, recuperation etc.)

Development tools and R&D environment.

- \circ Electronics (front-end and DAQ) for gaseous detectors R&D
- \circ Software tools for detector physics simulations
- \circ Infrastructures development, testing and production facilities
- \circ Relations with industry
- \circ Networking collaborations, technology dissemination and training

Applications beyond fundamental research.

TF1 strategy and concerns

- Start from current technologies and their limitations, future perspectives
- Future applications (but with no focus on the experiments)
- Focus on generic R&D and the challenges: pushing current technologies to the limits and developing new techniques
- Focus on common infrastructure, tools and test facilities, relation with industries, networking for supporting detector R&D
- Applications beyond fundamental research

The panel is pushing more on the experiment-oriented R&D

 Promoting project-oriented R&D induces to focus on particular applications and paradoxically leads to restriction of possible fields of applications and size of developer/user community

ECFA R&D Input sessions → more focus on the projects and existing technologies.

• Many R&D were not presented (for example no-R&D presented in the future astroparticle neutrino experiments talk)

We aim to cover as many R&D as possible (Matrix in preparation see backup) We invite you to contact us and the speakers of the symposium

TF1 questionnaire

TF1-gaseous detectors Questionnaire

Questions on national strengths (equal to all TFs):

- Areas of particular national strength or of minimal significant activity within the topics covered by the Task Force 1 Gaseous Detectors
- 2) Current national plans for strategic investment relevant to this Task Force area
- Significant opportunities for seeking future resources, particularly (though not only) through European schemes (also in synergy with other science areas) that should be considered when highlighting R&D priorities

Specific questions related to TF1 topics:

Please let us know:

- 1) If there are topics not covered in the proposed TF1 Symposium agenda
- For a given topic in the agenda the R&Ds you think are particularly relevant for your community and for which future application
- 3) Any suggestions to facilitate detector R&D on the international level

Overlapping topics between TFs

- Gaseous detector as Active layer in sampling calorimeter (TF1 and TF6)
- overlap with TF4 → Keep technology issue in TF1
 - Photon detectors, TPC, RICH in TF1 and TF4
 - dE/dx for PID covered in TF1 and TF4
 - TRD for PID covered in TF1 and TF4
 - RPC technologies used for ToF -> covered in TF1
- Additive manufacturing and new materials in TF1 and TF5
- Picosecond ASICs and fast discrimination -- interface area with electronics TF7

BACKUP

Notes about TF1 matrix and the input sessions:

https://indico.cern.ch/event/994685/

https://indico.cern.ch/event/994687/

Gaseous detectors at HL-LHC

Main Upgrade LHCB in LS4 (LS5)

TF1: Gaseous Detectors (& Large Scale Tracking) TF1: Gaseous Detectors (& Large Scale Tracking) LHCb Upgrade II : Muon system LHCb Upgrade II : Tracking System Requirements Requirements: -Rates up to several MHz/cm² in the inner regions - large scale, low cost: 30m² per layer, 12 layers -Efficiency > 95% within 25 ns - 70µm resolution in bending plane -Stability up to 6 C/cm² accumulated charge in 10 R&D: years of operation Scintillating Fibre tracker. R&D on µ-RWELL Radiation hard NOL fibres. > 35kGy - Single-amplification stage, spark-protected resistive MPGD based on a Cryogenic operation SiPMs. breakthrough technology suitable for large area planar tracking devices SiPMs reduce active area, micro-lenses

- -The detector is being characterized: gas gain ~ 10⁴, rate capability ~10 MHz/cm², efficiency ~97%
- A design for the high rate has been found which is suitable for a simple industrialisation process

Chris Parkes, ECFA R&D Roadmap, February 2021

- Time resolution to provide y-segmentation ?
- Gaseous Solutions ? No R&D currently

bris Parkes ECEA R&D Roadman February 202

Gaseous detectors at HL-LHC

- R&D for LS4 (LS5) projects over next five (ten) years

Application - Detector component	Technology	Challanges	From the input sessions
Inner tracker/PID	MRPC, multi-GEM, RICH	high spatial resolution, high rate/occupancy, fast/precise timing, radiation hardness, low mass	LHCb: option MPGD (instead of Scintillating Fibre tracker): requirements large area, low cost, high spatial resolution (70 um bending plane). RICH Radiators (C4F10): new eco-gas search
Muon trigger and tracking	Multi-GEM, resistive- GEM, Micromegas, micro-pixel Micromegas, RPC, RWELL, TSG, Drift chambers	stability, ageing, large area, low cost, space resolution, eco gases, spark-free	 -Rates up to several MHz/cm2 in the inner regions -Efficiency > 95% within 25 ns -Stability up to 10 C/cm2 accumulated charge in 10 years of operation" LHCb: uRwell Existing chambers remain Atlas: RPC, Drift tubes, Micromegas, TRD, TSG ; CMS: RPC, Drift tubes, Triple-GEM, CSC. New gas mixture with lower environment impact

EW-Higgs-Top Factories (ee) linear colliders

The Linear Collider Detector Design - Main Features

Focusing on general aspects

Detector R&D for Linear Collider Detectors - ECFA Detector Roadmap Input, February 2021

EW-Higgs-Top Factories (ee) linear colliders

Application - Detector component	Technology	Challanges	From the input sessions
Inner tracker/PID	multi-GEM, Micromegas, GEM + pixel readout , InGrid (integrated Micromegas grid with pixel readout), Drift Chamber, RICH	high spatial resolution, high rate/occupancy, fast/precise timing, radiation hardness, low mass, 4D tracking, Drift Chamber transparency, cluster counting	 Significant beam-induced backgrounds: In-time pile-up of hadronic background: granularity for topological rejection CLIC (more challenging wr.t ILC): small Atbunch (0.5 ns) results in out-of-time pile-up: ns-level timing in many detector systems radiation environment and the particle density at Linear Colliders is benign compared to HL-LHC particle ID systems - improved flavour tagging with better π/K separation via TOF or other means TPCs: Central challenge to reach high resolution in a robust way: controlling ExB effects, field distortions, eliminating ion backflow while keeping transparency. Light materials, low-power readout to reduce required material for cooling: Advances in all "large-volume" technologies (TPCs, Drift Chambers, RICH counters) highly beneficial.

EW-Higgs-Top Factories (ee) linear colliders

Application - Detector component	Technology	Challanges	From the input sessions
pre- shower/EM CALO	GEM, THGEM RWELL, Micromega		
HADRON CALO	GEM, THGEM RWELL, Micromegas, MRPC	high granularity, radiation hardness, large volume, excellent hit timing	 (semi-) Digital hadron calorimetry Primary technology RPCs, also MPGDs: Scalability to very large areas: ~ 10 000 m2, while keeping uniformity of response and avalanche properties. Requires eco-friendly gas solutions to enable long-term operation of large systems Adding few 10 ps-level time resolution for some layers: Highly compact, scalable MRPC layers
Muon trigger and tracking	GEM, THGEM, RWELL, Micromegas, RPC	stability, ageing, large area, low cost, space resolution, no greenhouse gases, spark-free	- similar requirements as for calorimeter, but coarser segmentation or strip-based readout

EW-Higgs-Top Factories (ee) circular colliders

Belle II Upgrade

Issues and options for Belle II upgrades for high luminosity I

- Robustness against machine backgrounds: many different sources (TF8) · From interaction region, from tunnel, from
- Small pixel pitch: 30x30 µm²
- · Fast chip integration time: 25 ns (100 ns total integration time window)
- Thin material: 0.1% X₀ inner, 0.3-0.5% X₀ outer
- Low and homogeneous power consumption: < 200 mW/cm² Radiation hard: 100 Mrad TID, 10¹⁴ n_{eg} cm⁻² NIEL
- Very complex and tight space constraints in interaction region
- Very low material tracking; good space and time resolution (TF1, TF3, TF7)
 - Fast, high granularity, low mass replacement for current VXD: study of depleted CMOS MAPS; SOI sensors; thin strips
 - Faster and more radiation tolerant electronics for CDC readout
 - Replacement for drift chamber under study: CMOS MAPS inner part; study of a TPC option
- New ideas: timing layers (TF3, TF7)

Interactions in nearby material

- · Possible use as TOF to improve PID performance
- Provide track trigger in addition to or instead of CDC

https://indico.cern.ch/event/895924/contributions/3968854/attachments/2102385/3560917/baudot-VXDupgrade-Belle2.pdf

FCC-ee

FCC-ee **CDR: Two Complementary Detector Concepts**

"Proof of principle concepts"

CLD

Not necessarily matching (all) detector requirements, which are still being spelled out

Based on CLIC detector design; profits from technology

developments carried out for LCs (c.f. F.Simon's talk)

All silicon vertex detector and tracker

3D-imaging highly-granular calorimeter system Coil outside calorimeter system

https://arxiv.org/abs/1911.12230, https://arxiv.org/abs/1905.02520

- New, innovative, possibly more cost-effective concept Silicon vertex detector
- Short-drift, ultra-light wire chamber
- Dual-readout calorimeter
- Thin and light solenoid coil inside calorimeter system

https://pos.sissa.it/390/

Mogens Dam / NBI Copenhager

ECFA Detector R&D Roadmap Input Session

19 Feb, 2021

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Momentum [GeV/c] FCFA Detector R&D Roadman Input Session

19 Feb 2021

80 100

EW-Higgs-Top Factories (ee) circular colliders: FCC-ee

Calorimetry

• Several technologies being considered

Technology	ECAL	HCAL	
CLD / CALICE-like	W/Si W/scint + SiPM	Steel/scint + SiPM Steel/glass RPC	
IDEA / Dual Readout	Brass (lead, iron) / parallel s	cint + PMMA (Č) fibres, SiPM	
Noble Liquid	Fine grained LAr (LKr) / Pb (W)	CALICE-like ?	
Crystals	Finely segmented crystals (possibly DR)	Dual Readout fiber?	

Possibibly augmented via Dual Readout

- + Fine segmentation for PF algorithm and powerful γ/π^0 separation and measurement
- In particular for heavy flavour programme, superior ECAL resolution needed -
 - $\Box 15\%/{\rm VE} \rightarrow 8\%/{\rm VE} \rightarrow 3\%/{\rm VE}$
- Other concerns
 - Departional stability, cost, ...
- Optimisation ongoing for all technologies
 - \blacksquare Choice of materials, segmentation, read-out, ...

Mogens Dam / NBI Copenhagen

ECFA Detector R&D Roadmap Input Session 19 Feb, 2021

Thin solenoid inside calorimeter system (IDEA & LAr)

ECFA Detector R&D Roadmap Input Session

25

2.0

1.5

1.0

0.5

lenoid Magnet and Muon System

Muon system in instrumented return yoke

Proposed technologies

RPC (30 × 30 mm² cells)

* Crossed scintillator bars

Ongoing R&D work

gas gap 4-7 mm

Copper top laver (5u

u-RWELL

G. Bencivenni et al., 2015 JINST 10 P02008

DLC layer (0.1-0.2 µm)

□ 3-7 layers being considered: 3000-6000 m²

μRWell chambers (1.5 × 500 mm² cells)

Also for IDEA pre-shower detector

EW-Higgs-Top Factories (ee) circular colliders

Application - Detector component	Technology	Challanges	From the input sessions
Inner tracker/TPC/Drift chambers	multi-GEM, Micromegas, GEM + pixel readout , InGrid (integrated Micromegas grid with pixel readout), Drift Chamber, RICH	high spatial resolution, high rate/occupancy, fast/precise timing, radiation hardness, low mass, 4D tracking, Drift Chamber trasparency, cluster counting	 BELLEII Upgrade: Replacement for drift chamber under study: CMOS MAPS for inner part or TPC option FCC-ee: IDEA: Extremely transparent (Radius 0.35 – 2.00 m) Drift Chamber (TPC non feasible due to high rate (70 kHz/cm2) and low B field> considered at CEPC)
pre-shower/EM CALO	GEM, THGEM RWELL, Micromega, RPC		FCCee Preshower: µRWell chambers
HADRON CALO	GEM, THGEM RWELL, Micromegas, MRPC	high granularity, radiation hardness, large volume, excellent hit timing	FCCee CLD / CALICE-like: Steel/glass RPC
Muon trigger and tracking	GEM, THGEM, RWELL, Micromegas, RPC	stability, ageing, large area, low cost, space resolution, no greenhouse gases, spark-free	Fcc-ee: 3-7 layers being considered: 3000-6000 m2: RPC ($30 \times 30 \text{ mm2}$ cells) or µRWell chambers ($1.5 \times 500 \text{ mm2}$ cells)

High-energy hadron collider

A Possible FCC-hh Detector – Reference Design for CDR

High-energy hadron collider

High-energy hadron collider

Application - Detector component	Technology	Challanges	From the input sessions
Inner tracker	Micromegas, GEM, microRwell	high spatial resolution, good timing, radiation hard	
pre-shower/EM CALO	GEM, THGEM RWELL, Micromegas, FTM	high spatial resolution, high rate/occupancy, fast/precise timing, radiation hardness, 4D tracking	
HADRON CALO	GEM, THGEM RWELL, Micromegas, FTM	high granularity, radiation hardness, large volume, excellent hit timing, 4D tracking	
Muon trigger and tracking	GEM, THGEM, RWELL, Micromegas, RPC, FTM	stability, ageing, large area, low cost, space resolution, no greenhouse gases, spark- free, excellent hit timing	Muon detection in forward region: Expected rate in barrel 500 Hz/cm2. Excpected rates up to 500kHz for r > 1m . Position resolution requirments: 50 μ m position resolution and 70 μ rad angular resolution (for η =0) to get ≤10% combined momentum resolution up to 20TeV/c

Strong Interactions Experiments at Future Colliders

EIC – hadron ID

Requirements

- π^{\pm} , K^{\pm} , p^{\pm} separation over a wide range $|\eta| \leq 3.5$
- Resolution: $\pi/K \sim 3-4 \sigma$, $K/p > 1 \sigma$
- Momentum-η correlation a different PID technology • -5 < η < 2: 0.2 < p < 10 GeV/c
 - 2 < η < 5: 0.2 < p < 50 GeV/c
- Hadron cut-off: B=1T \Rightarrow p_T > 200MeV, B=3T \Rightarrow p_T > 500MeV

Barrel

Reference: hpDIRC (high performance DIRC)

- Quartz bar radiator, light detection with MCP-PMTs
- Fully focused
- π/K separation ~ 3 σ @ 6 Gev/c
- Reuse of BaBar DIRC as alternative

R&D e.g.: add timing to the DIRC

dE/dx from TPC, complementary expected resolution ~ STAR, sPHENIX

TOF (\sim 1m lever arm) LGAD (Low Gain Avalanche Detector)

Forward

Reference: dRICH (dual RICH) Aerogel and C-F gas radiators Full momentum range Sensor: Si PMs (TBC)

π/K separation ~ 3 σ @ 50 Gev/c

Windowless RICH

Gaseous sensors (MPGDs), CF₄ as radiator and sensor gas Low p complements required (TOF with 2.5m lever arm/aerogel (mRICH)

HP-RICH (high-pressure RICH) Eco-friendly alternative to dRICH

Ar @ 3.5 bar / 2 bar \leftrightarrow C₄F₁₀ @ 1 bar / CF₄ @ 1 bar

Luciano Musa (CERN) - ECFA R&D Roadmap Input Session - 19th February 2021

EIC – Photon Detection Technologies

Photon Detection Technology critical for many PID devices

- High-gain: 10⁵ 10⁶
- Small pixels with individual readout: O(1mm pitch)
- Good timing (even with small signals): ≤100ps (DIRC), ≤ 800ps (mRICH, dRICH)
- Tolerance to magnetic field (1.5 3 T) and radiation (up to 10¹¹ n_{eo}/cm²)

Possible solution driven by detector performance and operational parameters, with cost optimizaton in mind

Viable candidates for EIC applications

- Multi-anode PMTs (MaPMTs)
- Commercial Microchannel-Plate PMTs (MCP-PMTs)

R&D needs

LAPPDs: very promising, but not yet suitable for EIC ➡ need pixelization

➡ Reduce sensitivity to B field

GEM-based photosensors (low-cost, radiation hard)

- Improve performance in the UV useful for gase only RICH
- develop of photocathode sensitive in the visible region

TOF with 2m lever arm, 2 options

- LAPPD (Large Area picos Photon Detector) MCP, Cherenkov in window, 5-10 psec
- LGAD (Low Gain Avalanche Detector)
 - Silicon Avalanche, 25-35 ps
 - Accurate space point for tracking
 - Relevant also for central barrel

- Unfocussed CF₄ Cherenkov det.
- New gain stage proposed to improve e/π separation

- Large-Area Picosecond Photodetectors (LAPPDs)
- Gaseous Electron Multipliers (GEMs) a for gas-only RICH
- Silicon PMs (SiPMs)

➡ Increase fill factor

SiPM/SPAD: promising, quickly improving (driven mostly by automotive sector), cheap technology ⇒ can be operated up to 3T

- ➡ Reduce sensitivity to neutron damage
- ⇒ Reduce DCR (presently too high for DIRC applications)

Strong Interactions Experiments at Future Colliders: EIC

Application - Detector component	Technology	Challanges	From the input sessions
Inner tracker/PID	Micromegas, GEM, microRwell, dual- RICH, high- pressure RICH	high spatial resolution, good timing, radiation hard , tolerance to magnetic field	 tracking barrel: TPC surrounded by MPGD or set of coaxial cylindrical MICROMEGAS or forward: 1 disk with GEMs with Cr electrodes hadron PID forward: Dual-RICH fluorocarbon gaseous RICH, high pressure RICH (Ar @ 3.5 bar / 2 bar n C4F10 @ 1 bar / CF4 @ 1 bar) Photon Detection Technologies requirements: Highgain: 10^5 - 10^6 high-resolution O(1mm pitch) Good timing (even with small signals): ≤ 800ps (mRICH, dRICH) Tolerance to magnetic field (1.5 - 3 T) and radiation (up to 10^11 neq/cm2): GEM-based photosensors (low-cost, radiation hard)
HADRON CALO	GEM, THGEM RWELL, Micromegas, FTM, RPC	high granularity, radiation hardness, large volume, excellent hit timing, 4D tracking	option RPC/DHCAL
Muon trigger and tracking	GEM, THGEM, RWELL, Micromegas, RPC, FTM	stability, ageing, large area, low cost, space resolution, no greenhouse gases, spark-free, excellent hit timing	

Neutrino Long Baseline

High-Angle Time Projection Chambers : HA-TPC

- $\checkmark\,$ Track reconstruction in 3D. Space point resolution around 800 μm
- ✓ Charge measurement

- ✓ Momentum measurement (<10% at 1 GeV/c)
- \checkmark Particle identification by combining dE/dx with momentum measurement

Low momentum of a few hundred MeV/c in the high angle and back

42

High-Angle Time Projection Chambers : HA-TPC

Neutrino Long Baseline

Application - Detector component	Technology	Challanges	From the input sessions
Inner tracker/PID	Micromegas, high pressure TPC, double- phase TPC	very large volume,radio purity	 DUNE Far Detector: LArTPC Anodes technologies: DP (double phase): In the double phase detector the electrons are extracted from the liquid Ar to a gaseous Ar volume within a strong electric field of 2 to 3 kV/cm and undergo afterwards a charge amplification though Large electron multiplier (LEM) before the signal is readout at the segmented anode. DUNE Near Detector (ND-GAr: High Pressure gas TPC (1t) + ECAL + magnet): includes high pressure 10 bar gaseous Argon TPC Hyper-Kamiokande High-Angle Time Projection Chambers : HA-TPC with MICROMEGAS at anode amplification.
Muon tagging	GEM, RPC, Micromegas, Ionization chambers	stability, ageing, large area, low cost, space resolution	

Detector R&D requirements for future rare decay processes experiments (not colliders)

Integrated high-intensity Kaon programme at the SPS

 $K_L \rightarrow \pi^0 l^+ l^-$ Data taking in dump mode to reach 10¹⁹ POT to search for FIPs

Phases order depends on factors like civil engineering and detector readiness. K_L phase (KLEVER) probably involves civil construction, later stage

• $K_L \rightarrow \pi^0 \nu \nu$ 1×10¹⁹ pot/year **6x increase**

increases with respect to

COMET Straw tracker

"StrECAL" = Straw tracker and ECAL

To measure all delivered beam incl BG, vacuum-compatible tracker and calorimeter is employed Straw = Planer/Low-mass, LYSO crystal ECAL = High resolution / High density Same concept as Phase-II detector = **Prototype of Phase-II Final Detector**

Ultra thin straw tube chambers operating in vacuum

- 20μmT/10mmφ for Phase-I
- 12μmT/5mmφ for Phase-II
- Ar:C₂H₅=50:50
- Each "station" consists of 240(~500) straws ×2 5(>6) stations for Phase-I (Phase-II)

High-rate beam 1.3--2 1013 protons on target over ~3 sec spill Unseparated secondary hadron beam Challenging time resolution (20-40 ps)

K⁺ phase

- Essential K⁺ ID, momentum, space and time
- · High-rate, precision tracking of pion
- Minimize material
- Highly efficient PID and muon vetoes
- Highly efficient and hermetic photon vetoes
- High-performance EM calorimeter (energy
- resolution, linearity, time, granularity)

STRAW detector

Straw chambers for 4x intensity

- Main feature: Straw diameter ~5 mm
- Improved trailing-time resolution: ~6 ns (per straw), gaussian shape
- Smaller maximum drift time: ~80 ns
- Rate capability increased by factor 6-8, due to geometry and shorter drift
- Less space charge due to shorter drift time
 - Ion clusters are faster → can use fast shaping
 - Improved time resolution: $30 \rightarrow 6$ ns for single straw, $5 \rightarrow 1$ ns for track
- Maintain efficiency > 98%
- Decreased straw wall thickness: ~12 µm, with copper and gold plating,

biggest contribution to material

- smaller gas volume: 2nd biggest contributor to mater
- Position resolution (from leading edge time resolution) unchanged but can increase number of straws per track while maintaining low material budget
- Lavout: 4 chambers, ~21000 straws
- Material budget: 1.7% → 1.1% X₀

Design study started **CERN** and Dubna

		NA62	COMET Phase-I	New Straw
ial Straw	Straw Wall Thickness	36 µm	20 µm	12 µm
n)	Straw Diameter	9.8 mm	9.8 mm	4.8 mm
NII) N	Metal Deposition	Cu+Au, 70nm	Al, 70 nm	*Al, 70 nm
	Photo			
	Current Status	In Operation	Under Construction	Just Develop

* Al for prototype; final straws will have 50 nm Cu + 20 nm Au like present stra

Detector R&D requirements for future rare decay processes experiments (not colliders)

Application - Detector component	Technology	Challanges	From the input sessions
Inner tracker/PID	Micromegas, THGEM, GEM, ACTIVE TPC, STRAW TUBES	high spatial resolution, occupancy, fast/precise timing, radiation hardness, low mass	NA62 straw chambers with reduced diameter and material budget to increase rate capability (500 kHz/straw) and improved momentum resolution Mu2e-II Low-mass STRAW tracker COMET ultra-thin Straw tracker
Muon trigger and tracking	Micromegas, THGEM, GEM	stability, ageing, large area, low cost, space resolution, no greenhouse gases, spark-free, excellent hit timing	

Strong interaction at storage rings & fixed target

Strong interaction at storage rings & fixed target

13

AMBER / CERN

Contact: S. Levorato, INFN Trieste: J. Friedrich, TU München: V. Andrieux, U of Illinois: O. Denisov, INFN Torino

Detector R&D for many components planned, some examples

Technologies candidates under investigation

/event/989298/contri

There are significant technological challenges in producing a large area mixed technologies detector

A combination of the ongoing technological R&Ds would most probably satisfy our requirements

he NA60+ Silicon vertex telescope

19 02 202

NA60+ / CERN

19.02.2021

butions/4217765/

- 0.5 2 m diagonal-sized MPGD based trackers study (MWPCs substitution)
- Large size silicon tracker inside of polarised target (cryogenic environment)
- R&D on MPGD based photon detectors after the RICH-1 hybrid THGEM+MM upgrade (1.4 m² 2016)
- R&D on high space resolution gaseous photon detectors for compact RICH approach
- Active targets

High rate

(center)

high

TF1, TF3, TF7

Resistive

granularity Micromegas

DOI: 10.1088/1748-

0221/15/09/C09043

CERN BEAMS

Tracking

0.5 - 2m diag size MPGD based trackers study (MWPCs substitution)

High resolution low channel count Low material (periphery) budget anode URWELL Canacitive "Zig-zag" Al on polymer PCB charge sharing •DOI: 10.1088/1748https://indico.cern.ch https://indico.cern.cl

/event/843711/contri

butions/3581711/

https://indico.cern.ch/

vent/872501/contributi

ons/3731237/attachme

nts/1985339/3307907/

bortfeldt 200211.pdf

- · For the running of the AMBER program, we evaluate the possibility to substitute of a part of MWPCs with MPGD based detectors
- The motivation is to substitute the structurally aged MWPC, to be able to optimize the acceptance coverage with a variable size detector. We would like to be able to cover both the high-rate central beam area and the external part of the aperture with a single detector taking advantage of the MPGDs anode flexibility
- The new detectors should be ready for the new trigger less DAQ and one of the possible R/O options could be the TIGER ASIC that was developed specifically to be used with MPGD detectors. Several other options like the VMM ASIC has to be investigated

□ We would like to produce the first prototypes of a size ~55x55 cm² in 2022

R&D | Strong Interaction | Fixed Target | J. Bernhard

AMBER / CERN

R&D on MPGD based photon detectors after the RICH-1 hybrid THGEM+MM upgrade (1.4 m² 2016)

New photoconverting material approach using Hydrogenated Diamond nano grains Velardi et al., Diamond and Related Materials 76(2017)1 ;

Robust and efficient photoconverter never used for photon detectors of large size (~ m²)

Being tested with THGEM based detector as replacement of CsI for RICH windowless approach (VUV)

PID

RD51 Workshop on Gaseous Detector Contributions to PID 16-17 February 2021 https://indico.cern.ch/event/996326/ -MPGD-based photon detectors for the upgrade of COMPASS RICH-1 and beyond Chandradov Chatteriee -Nanodiamond photocathode for MPGD-based single photon detectors at the future EIC Daniele D'Ago

Contact: S. Levorato, INFN Trieste; J. Friedrich, TU München; V. Andrieux, U of Illinois: O. Denisov, INFN Torino

R&D on high space resolution gaseous photon detectors for compact RICH approach

Prototype of modular scalable mini pad hybrid PD, **INFN Trieste approach**

Challenging R&D started, in synergy with ALICE experiment and with an aggressive schedule for the next 3 yrs

Contacts: E. Scomparin, INFN Torino; G. Usai, U Cagliari

Prototypes of modular scalable mini pad resistive MM INFN Roma Tre approach

Space resolution ~200 arm per PAD-P, down to 80 gm for DLC option Side view of SERIES 2 prototype

R&D | Strong Interaction | Fixed Target | J. Bernhard

Strong interaction at storage rings & fixed target

Application - Detector component	Technology	Challanges	From the input sessions
Inner tracker/PID	Micromegas, THGEM, GEM, ACTIVE TPC, STRAW TUBES, MRPC for TOF	high spatial resolution, occupancy, fast/precise timing, radiation hardness, low mass	ACTAR-TPC, SPECMAT: ACTIVE TPC with MICROMEGA AMBER TRACKING: 0.5 – 2 m diagonal-sized MPGD based trackers study (MWPCs substitution): uRwell o resistive high granularity MICROMEGAS, reduced number of channel with zig-zag strips AMBER Photon PID: R&D on high space resolution gaseous photon detectors for compact RICH approach: - mini pad resistive MM - New photo-converting material approach using Hydrogenated Diamond nano grain AMBER RICH: gas radiator solution with eco-gas alternatives to C4F10"
Muon trigger and tracking	Micromegas, THGEM, GEM	stability, ageing, large area, low cost, space resolution, no greenhouse gases, spark-free, excellent hit timing	NA60: GEM based muon tracker

MUON COLLIDER

General requirements for the detector

- ✓ Track efficiency and momentum resolution for feasibility and precision of many physics studies e.g. final states with leptons
- ✓ Good ECAL energy and position resolution for e/gamma reconstruction
- ✓ Good jet energy resolution
- ✓ Efficient identification of a secondary vertex for heavy quark tagging
- ✓ Other considerations (Missing Energy/MET, taus, substructure)
- ✓ Many ILC or CLIC considerations apply to Muon Collider detectors, although beam background conditions are different and much more challenging requiring a dedicated design for Muon Collider experiment: vertex/tracking – calorimetry – triggerless DAQ
- ✓ Detector design considerations should be driven by physics requirements and BIB considerations
- ✓ Optimal design will very likely be different for different collision energies

Detector @ $\sqrt{s} = 1.5 \ TeV - full \ simulation$

CLIC Detector technologies adopted with important tracker modifications to cope with BIB Detector design optimization at \sqrt{s} =1.5 (3) TeV one of the primary goals

ifferent stages of design depending on CoM energy

B = 3.57 T to be studied and tuned

Vertex Detector (VXD)

- 4 double-sensor barrel layers 25x25µm²
 4+4 double-sensor disks 25x25µm²
- Inner Tracker (IT)
- 3 barrel layers 50x50µm²
- 7+7 disks

Outer Tracker(OT)

- 3 barrel layers 50x50µm²
- 4+4 disks "
- Electromagnetic Calorimeter (ECAL)
 40 layers W absorber and silicon pad sensors, 5x5 mm²
- Hadron Calorimeter (HCAL)
- 60 layers steel absorber & plastic scintillating tiles, 30x30 mm²

15

TF1 Gaseous Detectors

MPGDs or also improved RPCs, ... for readout of high-granularity hadronic calorimeters and for muon detectors in high rate areas where high precision is required (eg endcaps, first station in barrel,...)

GOAL:

- 1. First Muon Station(s) with rad-hard, high spatial, time resolution and high ratecapability and two-track separation capable detectors; instrument large areas
- 2. Instrumentation of active areas in sampling (high-granularity) Hadron Calorimeter
- Study of hadronic shower interaction (absorber) with readout by gaseous detector as active detector
- Develop new calorimetric schemes (e.g. crystal absorber + photo-detection by MPGD)
- New gasmixtures for optimized operation and detection

FTM Concept, design, performance

MUON COLLIDER

Application - Detector component	Technology	Challanges	From the input sessions
HADRON CALO	Micromegas, GEM + pixel readout , InGrid (integrated Micromegas grid with pixel readout), FTM, RPC	high granularity, radiation hardness, large volume, excellent hit timing, 4D tracking	 High longitudinal and transversal granularity (~1cm2) High time resolution (few hundred of ps) to remove the BIB. High radiation hardness Gaseous detector (large area, high rate capabilities and spatial resolution, rad-hard) options considered for readout layers RPCs, GEM and Micromegas, Fast Timing MPGD (FTM).
Muon trigger and tracking	GEM, THGEM, RWELL, Micromegas, RPC	no greenhouse gases, spark-free, high spatial resultion, fast/precise timing	Muon Station(s) with rad-hard, high spatial, time resolution and high rate capability and two-track separation capable detectors; instrument large areas: RPC , MPGD

Non-accelerator experiments for **Dark Matter search**

- Demonstrate e-drift over large (>2.5 m) distances
 - high-voltage feed-throughs: must deliver 50 kV or more to the cathode (vacuum seal \rightarrow cryofitting)
 - electrodes with large (>2.5 m) diameters: wire, mesh/ woven, micro-pattern
- reflective (and WLS in the case of Ar) coatings to optimise light collection efficiency
- cryostat design: stability; reduce the amount of material and hence gamma and neutron emitters close to the TPC

2.6 m diameter Xe TPC demo rator for DARWIN

R&D FOR MULTI-TON SCALE NOBLE LIQUIDS: LIGHT AND CHARGE

- Hybrid sensors: e.g., ABALONE, VSiPM, SIGHT
 - SiPM + Quartz + photocathode: reduced radioactivity compared to PMTs
 - Iower DCR compared to SiPM arrays (photosensitive area) difference)
- Cryogenic low-noise, low-radioactivity, low heat dissipation readout
- Bubble-assisted Liquid Hole Multipliers: local vapour bubble underneath GEM-like perforated electrode in LXe

Hybrid photosensor: Hamamatsu XE5859

Hybrid photosensor: ABALONE; left (DARWIN R&D with SiPM); right: NIM 954, 2020

21

iquid

Non-accelerator experiments for Dark Matter search

Future Facilities	Application - Detector component	Technology	Challanges	From the input sessions
non- accelerator (Dark Matter search)	Tracking/PID	OpticalMPGD, Micromegas, GridPix, TPC	radio purity, cryogenic temperature,low presure, high presure, xenon procurement is challengin \circ argon depleted in 39Ar underground wells \circ both xenon and argon, storage and recuperation techniques	Ar, Ne: TREX-DM (TPC Rare Event eXperiment for Dark Matter) is intended to look for low mass WIMPs in the using light elements (Ne, Ar) as target in a high pressure TPC equipped with Micromegas readouts. Cygnus: multi-ton gas target (SF6:He, HeCF4) using TPC for Directional DM search, MPGD optical readout Dual-phase TPC LXe detectors: PandaX-4T, LZ Dual-phase TPC LAr detector DarkSide -20k, Argo 200k electrodes with large (>2.5 m) diameters: wire, mesh micro-pattern

Non-accelerator experiments on antimatter and neutron physics

Applica tion - Detecto rcompo nent	Technology	Challanges	From the input sessions	Overview of detection at ELENA at CERN
Trackin g/PID	OpticalMPGD, Micromegas, GridPix, TPC	radio purity, cryogenic temperature,lo w presure, high presure	 ELENA: Antimatter experiments: GBAR: H+ free fall chamber surrounded by 6 faces of the surrounding cube, each face with a 60x60 cm2 triplet of Micromegas each with X and Y measurement. ALPHA-g: position sensitive particle detector, which provides information about antihydrogen annihilation location: TPC with MWPC amplification ESS Neutron physics Gd-deposited MPGD detectors Ongoing development based on GEM, VMM3 + SRS readout Requirements are: position resolution of few 100 microns several m2 detector, high rates 	<text></text>