

Istituto Nazionale di Fisica Nucleare

Discussione INFN su ECFA Detector R&D

Marco Selvi - INFN Bologna | <u>selvi@bo.infn.it</u>

Roadmap

per i gruppi **XENON** INFN (Bo, Fe, LNGS & Aq, Na, To)

15 marzo 2021

XENON10 XENON100 XENON1T

2005-2007	2008-2016	2012-2018	2020-2025	2027-
15 kg	161 kg	3200 kg	8400 kg	50 tonnes
15 cm	30 cm	96 cm	150 cm	260 cm
~10 ⁻⁴³ cm ²	~10 ⁻⁴⁵ cm ²	~10 ⁻⁴⁷ cm ²	~10 ⁻⁴⁸ cm ²	~10 ⁻⁴⁹ cm ²

the XENON project @LNGS

XENONnT

DARWIN

XENONIT OLNGS

XENONIT world-best results

current phase: XENONnT installed in 2020

XENONnT

TPC transportation underground

current phase: XENONNT installed in 2020

DARWIN LXe TPC

R&D on Photosensors

next phase: DARVIN

(just an option, so far) Visualisation of DARWIN in Borexino WT

DARWIN SCIENCE PROGRAMME

next phase: DARWIN 0

DARWIN TIMESCALE

The DARWIN astroparticle physics observatory Letter of Intent to the Gran Sasso Underground Laboratory of INFN

R&D on Photosensors: ABALONE

Principle

- p.e. accelerated towards scintillator windowlet (LYSO)
- $L_0 \approx 32 \gamma / \text{keV} \rightarrow$
- Readout using SiPM (G = $\sim 10^6$)
 - @ 25 kV, assuming collection efficiency $\eta = 10\% \rightarrow \sim 80$ p.e. Total gain: $\gtrsim 10^8$

Major advantages

- all UHV-components are evaporated
 - production can be fully automated
- field-shaping electrodes work as getter
- good timing
- good pulse height separation

- Consists of 3 monolithic glass components: base, dome and windowlet (industrially prefabricated)
- Bonding with a thin-film alloy using specific thin-film vacuum-sealing technique
- Absence of metal in ultra high vacuum
- High electric field (~25 kV)
- Sensor like SiPM needed to detect photon signal coming from the scintillator (windowlet)
 - Area gain: $1m^2 \rightarrow 1cm^2$

https://arxiv.org/pdf/1703.04546.pdf

Developed by Daniel Ferenc and produced by PhotonLab, Inc.

<u>https://arxiv.org/pdf/1810.00280.pdf</u>

Ferenc... Ferella, et al.

R&D on Photosensors: ABALONE

Pro	
Low costs once in mass production (Goal: < 5000\$ / m ²)	No
Low level of radioactivity due to absence of metal parts	(Hig
Low after pulse rate due to high field —> lower ionisation cross section (AP rate of 5*10 ⁻³ ions per pe)	Η
Very low dark count rate	Lo

	R11410-20 PMT	VUV-SIPM	ABALONE
Sensitive area [<i>mm</i> ²]	3216	100	9503
Dark count rate / mm ² [Hz]	0.02	1	0.001
Operating voltage [V]	$1.5 imes 10^{3}$	25	$25 imes 10^3$
Gain at operation voltage	5×10^{6}	$1 imes 10^{6}$	1×10^8
Quantum efficiency [%]	35	15-18	35

R&D on Photosensors: ABALONE

"Con"

ew technology: Needs be tested under different conditions

High electric field required gh voltage of 25kV, **but** similar to TPC)

Has to be combined with another light detector like a SiPM

ower energy resolution than a SiPM but better than a PMT

R&D on Photosensors: ABALONE

SiPM Tested and calibrated (DAQ ready)

MC simulation to fully characterise and improve sensor are ongoing

SiPM coupled and optical fibre installed **READY** to start extensive tests!

R&D activity carried out in collaboration with SU

The ABALONE is proposed as the light detector for DARWIN Proposed also for the DeepCore extension (IceCube) Simulations and tests at room temperature in advanced

- stage
- Liquid xenon tests are planned (as soon as funds materialise)
- Strategies to improve TPC electrodes with new concepts • are in-line with such sturdy photo-sensor properties People involved:
 - Ferella A.D. (UnivAq) <u>alfredo.ferella@aquila.infn.it</u>
 - Fulgione W. (INAF/INFN-LNGS)
 - **D'Andrea V.** (UnivAq), **Biondi R.** (INFN-LNGS)

R&D on Photosensors: ABALONE

Sottomesso PRIN 2020 su questo R&D

Grant presso Stockholm University

INFN funds: not yet submitted/discussed for DARWIN

Magnetic Piston Pump: efficiency Xe purification, low Rn emanation

3D drawing

In officina meccanica

R&D on Xe purification

- Gd-loaded Water: 0.2% of Gd in mass -> 3.4 t of Gd-sulphate-octahydrate; (technology from EGADS-SK colleagues)

- Cerenkov light is seen by additional 120 PMTs placed in water around the cryostat;
- high-reflectivity foil to confine an inner nVeto region with high light collection efficiency.

R&D on neutron veto

XENONnT nVeto

Neutron tagging efficiency: 85% with 0.2% Gd, 65% with pure water (requiring a threshold of 10 PMTs in coincidence)

120 8" PMTs to detect Cerenkov light from n-capture, inside a high reflectivity volume around the cryostat. Under commissioning since the tank has been filled with demi-water in December 2020.

R&D on neutron Veto

1 NYU ABU DHAR

Calibration with Th source Hit Map of Thourium Calibration Run

 3×10^{4}

 4×10^{4}

 2×10^{4}

Gd-loading:

- higher energy: 2.2 -> 8 MeV gammas
- shorter capture time: 200 us -> 20 us
- higher n-capture and detection efficiency
- lower rate of fake coincidences

Gd-Water purification plant:

Goal: maintain a large water transparency without removing the precious GdSalt.

Easier from the environmental point of view (at least with respect to organic liquid scintillators).

Primary responsibility of INFN groups.

R&D for future projects (e.g. DARWIN):

Develop tools to further concentrate GdSalt

Improve photosensors: QE, radioactivity, timing.

Fast (1ns sampling ?) Readout Electronics

2020/4/29 v10.3

ensors

flow

R&D on neutron veto

