DGWG meeting, May 11th 2010

B→K^(*)vv analysis (SL tag): Background Studies

Alejandro Pérez,

A. Stocchi, N. Arnaud, L. Burmistrov

LAL – Université Paris XI

DGWG meeting

Outline

- Background studies strategy
- Remind on selection:
 - \rightarrow B⁺ \rightarrow K⁺ $\nu\nu$
 - \rightarrow B⁰ \rightarrow K⁰ $\nu\nu$
 - > B*→K*νν
- Background studies results:
 - Background dependence on PID
 - Background characterization (main contributing modes)
- Summary and outlook

Background studies strategy (I)

- Wants to produce a list of modes which are the dominant contribution to the BB-background (charge and neutral)
- Samples:
 - Use BB-generic (charged and neutrals) n-tuples from previous BaBar analyses
 - → B^{+/0}→K^{+/0}νν (BAD-2132)
 - → B^{+/0}→K*+/0</sup>νν (BAD-1845)
- Two step approach (suggested by Matteo):
 - Study background composition of tag-side reconstruction
 - Then study background composition of signal-side
- The method: look at the true information and,
 - study sources of background due to mis-rec and mis-ID
 - study nature and multiplicity of the background B-decay modes
- From those samples will construct a cocktails of B decays

Background studies strategy (II)

- Method to study the background composition:
 - Need to define true-B associated with the tag and signal side candidates
 - Reminder:
 - > Btag reconstructed in $D^{(*)}$ Inu (I = $e^{+/-}$, $\mu^{+/-}$)
 - > D is reconstructed in final states with a K⁺ or K⁰_S (e.g. K⁻ π ⁺, K⁰_S π ⁺ π ⁻,...)
 - Definitions:
 - true-Btag: grand-grand-...-mother of the associated true particle of the K⁺/K⁰_s and lepton
 - true-Bsig: the other true-B in the event
 - Problem with this definition are SCF events: events with either
 - → a fake K⁰_s (combinatoric, 5% of the rec-K⁰_s)
 - different associated true-B to the Kaon and lepton
 - Only characterize the contributing B-modes for the non-SCF events
 - The SCF events has very similar B-modes contributions

Reminder: B^(*)→K^(*)vv Analysis

Tag-side selection

- ► Look for $D^{(*)}$ Inu decays (I = e, μ)
- ▶ D* reconstructed as D* \rightarrow Dπ, Dγ
- > D reconstructed as: $K^-\pi^+$, $K^-\pi^+\pi^-\pi^+$, $K^-\pi^+\pi^0$, $K^0_{\varsigma}\pi^+\pi^-$ (neutral)

-
$$K^-\pi^+\pi^-$$
, $K^0_S\pi^-$ (charged)

 K^+ (π^+) from D reconstruction is LHKaonTight (is not LHKaonNotAPion)

Signal-side selection

- \rightarrow B \rightarrow Kvv: look for a K $^+$ (K 0 _S) in LHKaonTight (KsTight) list.
- > $B^* \rightarrow K^* \nu \nu$: look for a $K^{*+}(K^{*0})$: $K^{*+} \rightarrow K^0_S(\rightarrow \pi^+ \pi^-) \pi^+$, $K^0_S(\rightarrow \pi^0 \pi^0) \pi^+$, $K^+ \pi^0$ (charged) - $K^{*0} \rightarrow K^{+}\pi^{-}$ (neutral)
- For charged mode apply charge correlation (opposite charges for Btag and Bsig)
- For this background studies only apply relaxed cuts on the main discriminant variables:
 - CM momenta and mass of the tag-side D, lepton and signal-side K/K*
 - Number of extra tracks in the event
 - No cut on Eextra

Tag-Side

Tag-Side

Tag-Side

Signal-Side

good ID

Signal-Side

$$B^+ \rightarrow K^{*+} \nu \nu$$
 $K^{*+} \rightarrow K^0_s (\pi^+ \pi^-) \pi^+$

F

bad ID

Signal-Side

$$B^+ \rightarrow K^{*+} \nu \nu$$
 $K^{*+} \rightarrow K^0_s (\pi^0 \pi^0) \pi^+$

Signal-Side $B^{+} \rightarrow K^{*+} \nu \nu$ $K^{*+} \rightarrow K^{+} \pi^{0}$

Signal-Side

$$B^0 \rightarrow K^{*0} \nu \nu$$
 $K^{*0} \rightarrow K^+ \pi^-$

$$K^{*0} \rightarrow K^{+}\pi^{-}$$

Some results: contributing modes (SCF)

Fraction of SCF events:

- B⁺→K⁺νν: ~11% (32%) of the BB-generic charged (neutral) sample
- B⁰→K⁰_Svv: ~15% (17%) of the BB-generic charged (neutral) sample
- B→K*vv: ~10% (22%) of the BB-generic charged (neutral) sample
- The results quoted in the next slides for the background composition on the tag and signal sides correspond to the non-SCF events
- I also Looked very quickly to SCF events and they seem to have the same mode composition as non-SCF ones

Some results: contributing modes (Btag)

B-decay modes composition on the Tag-side:

- Most of the modes found (96-98% in all samples) are semi-leptonic decays
 B→Dlnu:
 - → D is either a D, D*, or a higher D state (e.g. D'₁,D*₀,D*₂,...)
 - the lepton I is either e (50%), μ (48%), τ (2%)
 - Dlnu modes correspond to ~25% (23%) of the total B⁺ (B⁰) BR
- The rest of the B-decay modes are
 - semi-leptonic non-Dlnu decays (0.1-0.5% in all samples)
 - Hadronic decays (2-3% in all samples)
- A detailed summary of the results for the different modes can be found at http://www.slac.stanford.edu/~aperez/SuperB/Bkg_characterization/

Some results: contributing modes (Bsig)

- B-decay modes composition on the signal-side:
 - A significant amount of the modes found (30-50%) are semi-leptonic decays B→Dlnu, with similar composition as those found on the tag-side
 - > B⁺→K⁺vv: ~44.6% (46.3%) of the charged (neutral) BB-generic sample
 - > B⁰→K⁰_svv: ~52.9% (57.4%) of the charged (neutral) BB-generic sample
 - > B*→K*vv: ~38.4% (34.2%) of the charged (neutral) BB-generic sample
- A detailed summary of the results for the different modes can be found at http://www.slac.stanford.edu/~aperez/SuperB/Bkg_characterization/

Some results: contributing modes (Bsig)

- B-decay modes composition on the signal-side:
 - Hadronic decays: similar contributions are found for all signal modes
 - Most are 2- and 3-body B-decays, mainly with a D (D*, D(*), D1, D1, D2, D_{2}^{*}) and/or a K^{+}/K_{S}^{0} in the final state

<u>Mode</u>	Sample	frac. 2-body	frac. 3-body
B⁺→K⁺νν	B+B- generic	34.8	13.2
<u>Β⁺→Κ⁺νν</u>	B0B0 generic	23.9	21.9
$B^0 \rightarrow K^0 \nu \nu$	B+B- generic	23.2	13.8
$B^0 \rightarrow K^0 \nu \nu$	B0B0 generic	20.5	14.4
B*→K*νν	B+B- generic	27.5	16.8
B*→K*νν	B0B0 generic	20.5	23.8

- Higher multiplicity are similar to the ones above but with extra π^0 s in the final state
- A detailed summary of the results for the different modes can be found at http://www.slac.stanford.edu/~aperez/SuperB/Bkg_characterization/

Some results: contributing modes

Accomplished goals:

- Both tag and signal sides have been characterized
- A list of the main contributing modes (those with at least 5 events) can be found in the web: http://www.slac.stanford.edu/~aperez/SuperB/Bkg_characterization/
- Most of tag-side modes are Dlnu decays (~25% of the total B BR)
- On the signal-side around half of the modes are Dlnu decays (25% of total B BR), and the other half 2-Body/3-Body hadronic decays (~15-20% of total B BR)
- The list of modes on tag- and signal-sides represents around ~25%x(25+15)% = 10% of the total B-B decays modes
 - ⇒ can improve BB-background production time by a factor of ~8-10!

Some Issues:

- Some modes found in the BB-generic samples (3-body decays and higher) are not in the list of generic B-decays, e.g:
 - \rightarrow B⁺ \rightarrow D⁰ ρ ⁺ π ⁰, D⁰K⁺K⁰, Δ ⁺nD⁰, ...; B⁰ \rightarrow D⁻ ω π ⁺, D⁻K⁺K⁰, Δ ⁰nD⁰, ...
- Are those a non-resonant decay modeled in EvtGen, or products with material interaction?
- Only need to solve this issue to build the cocktails of BB modes to be produced as a representative sample of BB-background

Summary and outlook

Mis ID backgrounds:

- Most of Kaons, pions, Ks and leptons used to construct the tag- and signal- side candidates are not fake
- ⇒ Main background contribution is combinatorics

Background composition results:

- There is a significant amount of SCF between the signal and tag side (10-30%). These events have essentially the same composition of non-SCF events
- Almost all the tag-side candidates (~96-98%) are Dlnu decays (25% of total B BR)
- On the signal side:
 - Around 30-50% of modes found are Dlnu decays
 - The rest are 2-body/3-body hadronic decays with a D and/or Kaon in the final state
 - Those modes represent around 40-50% of the total B BR
- Can built a cocktail that represent around 10% of the total B-B decays
 - ⇒ can gain a factor of 8-10 in time of the BB-background production

Next steps:

- To solve the issue of modes found in BB-generic samples and not listed in the generic B decays file
- Build the cocktails for the B-background production

