AMS Italia Meeting Measurements of light Isotopes

11/03/21 - TIFPA Group

Light isotopes in cosmic rays

- B/C probes mostly "local" propagation
- p-bar come from much further
- light secondary like D, 3He and Be constrain better the p-bar secondary prod.

- ¹⁰Be/⁹Be: independent measurement of H
- ³He/⁴He: sec/primary
- D/p and D/⁴He: sec/primary, D-bar searches

Berillium in Cosmic Rays (CR)

- ⁷Be is stable if completely ionized, otherwise decays rapidly by electronic capture
- ⁹Be is stable
- ¹⁰Be is unstable, with a decay time comparable with residence time of CR in the Galaxy (~ 1.39 x 10⁶ anni)

¹⁰Be/⁹Be is a powerful "radioactive clock" for the measurement of residence time

• As every sec/prim ratio, it can constrain the grammage $X(E) = \int dl\rho(l)$

which is prop. to H/D

- H and D are thus dependent in many prop. models
- Adding a time dependence, ¹⁰Be/⁹Be can constrain D, allowing an independent measurement of H

Deuterons in CR

AMS: Identification of isotopes

Isotopes: Identified from the concurrent measurement of **Rigidity (p/Z)** and **Velocity**

$$M = \frac{RZ}{\gamma\beta} \Rightarrow \frac{\Delta M}{M} = \sqrt{\left(\frac{\Delta R}{R}\right)^2} + \left(\gamma^2 \frac{\Delta\beta}{\beta}\right)^2$$

Z measurement:

L1->UTof->(L1-L8)Tracker->LTof: negligible charge confusion

• R measurement: (L1-L8) Tracker

Velocity measurement:

- O ToF: 4 Layers, $\Delta\beta/\beta^{-1}-2\%$
- Ο RICH NaF: $\Delta\beta/\beta^{\circ}0.3\%$, β >0.75
- \circ RICH Agl: $\Delta\beta/\beta\sim0.1\%$, $\beta>0.95$

Selections on data

Step 1: Definition of geometry

• L1 + Inner Tracker

Step 2: Definition Z=1 sample

• Z = 1 at different levels

 $\begin{array}{c} \textbf{Step 3:}\\ \textbf{Good measurement of } \beta \end{array}$

- Quality of Time of Flight
- Multivariate analysis for RICH

Più in dettaglio...

	Resolution	Effective interval
Inner+L1 Tracker	σ _R /R ~ 10%	0.2 < E _k < 120 GeV/n
TOF	$\sigma_{\beta}^{\prime}/\beta \sim 3\%$	0.2 < E _k < 1.1 GeV/n
RICH NaF	$\sigma_{\beta}^{\prime}/\beta \sim 0.3\%$	0.7 < E _k < 3.7 GeV/n
RICH Agl	$σ_{\beta}/β ~ 0.1\%$	2.6 < E _k < 8.9 GeV/n

- Tre range di energia limitati dalla risoluzione in velocità dei sub-detectors
- Geometria Inner + L1: Ottimizziamo l'accettanza controllando le interazioni al top dello strumento
- Selezioni sulla carica a tutti i livelli per un segnale pulito di Z=1, Z=2 o Z=4
- per Deuterio: Selezioni avanzate sulla qualità della ricostruzione RICH

Simulazione MC "Realistica" (Time dependent)

Fit of Mass

- Smearing of 1/β with a 3 gaussian model
- Combination of smearing parameter to optimize □² of fit
- Join flexibility of fit with tail simulation of MC

Z=1 lsotopes

Z=4 Isotopes

- Cinzia Cernetti (Master Thesis)
- Abhinandan Dass (PhD Thesis)

Conclusion (1)

- General methodology for light isotopic analysis in AMS
- Time dependence of D/⁴He ratio
- Precision measurement of ¹⁰Be / ⁹Be

Conclusion (2)

D/⁴He Time dependence

- General methodology for light isotopic analysis in AMS
- Time dependence of D/⁴He ratio •
- Precision measurement of ¹⁰Be / ⁹Be

