

A Standard Model for CRs Physics with AMS-02: mission accomplished

Istituto Nazionale di Fisica Nucleare

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Nicolò Masi

Explaining Z ≤ 28 CRs physics by means of GALPROP and HelMod

- AMS-02 published data are fitted in the combined framework of GALPROP and HelMod (for Galactic and Heliosphere propagation, respectively) with a single model, capable of reproducing all primary and secondary spectra at the same time (*see* ApJ 840:115 No 2, 2017; ApJ 854:94 No 2, 2018; ApJ 858:61 No 1, 2018; ApJ 889:167, 2020, ApJS 250 27, 2020);
- The 28 proposed LISs fit Voyager 1, ACE, Pamela, AMS-02 (and many other experiments) and recent CALET and DAMPE data, from 10 MeV/n up to 200 TeV/n, representing a reference model for the Collaboration and a forecasting tool for astroparticle and solar physics.

MCMC Matrix Approach

M. Boschini, S. della Torre, N. Masi, I. Moskalenko, L. Quadrani, P.G. Rancoita *et al.,* Solution Of Heliospheric Propagation: Unveiling The Local Interstellar Spectra Of Cosmic Ray Species, The Astrophysical Journal **840**:115 No 2, 2017, arXiv:1704.06337

- L. The Monte-Carlo-Markov-Chain interface to GALPROP v56 was developed in Bologna from CosRay-MC and COSMOMC package, embedding GALPROP framework into the MCMC scheme;
- 2. The simulations run on Ravenna pc farm;
- 3. The solar modulation is made using **HelMod**;
- The experimental observables used in the MCMC scan include all primary CRs AMS-02 data and B/C ratio.

One order of magnitude of improvement for fundamental parameters uncertainties

New AMS-02 Z>8 Nuclei

AMS-02 data from PHYSICAL REVIEW LETTERS 124, 211102 (2020)

Updated secondary over primary ratio: B/C

The Model confirms its prediction capability for all AMS-02 species with a single set of parameters

Primary Lithium Discovery

Primary Lithium from Novae is mandatory to explain AMS-02 measurement

the observed stellar lithium abundances indicate that some proportion of lithium is also produced in lowmass stars and nova explosions. Indeed, the alpha-capture reaction of ⁷Be production ³He(α, γ)⁷Be was proposed a while ago (Cameron 1955; Cameron & Fowler 1971). A subsequent decay of ⁷Be with a half-life of 53.22 days yields ⁷Li isotope. To ensure that produced ⁷Li is not destroyed in subsequent nuclear reactions, ⁷Be should be transported into cooler layers where it can decay to ⁷Li, the so-called Cameron-Fowler mechanism.

Recent observation of blue-shifted absorption lines of partly ionized ⁷Be in the spectrum of a classical novae V339 Del about 40-50 days after the explosion (Tajitsu et al. 2015) is the first observational evidence that the mechanism proposed in 1970s is working indeed (Hernanz 2015).

LISs validity is extended up to tens (and hundreds) GeV/n for both injection and diffusive scenarios

Injection versus Propagation scenarios to explain CRs hardening above 300 GV

Extension of AMS-02 based LISs for p and He with CALET and DAMPE

HEAO vs AMS-02 Normalization to forecast Z >14 nuclei

Aluminum and Sodium

AMS-02 and HEAO normalization are very similar

Injection power laws and source abundances for $Z \le 28$ nuclei (including isotopes)

Table 2. Injection spectra of CR species							Table 3. Source Abundances of CR species						
Nuc-		Spectral parameters					Nuc-	Source	Nuc-	Source	Nuc-	Source	
leus	$\gamma_0{}^{R_0(\mathrm{GV})}s_0$	$\gamma_1^{R_1(\mathrm{GV})} s_1$	$\gamma_2^{R_2(\mathrm{GV})}s_2$	$\gamma_3^{R_3(7)}$	$TV)_{s_3}$	γ_4	leus	Abundance	leus	Abundance	leus	Abundance	
$_{1}\mathrm{H}$	$2.24^{0.95}0.29$	$1.70^{6.97}0.22$	$2.44^{400}0.09$	2.19^{16}	3 0.09	2.37	$^{1}_{1}\mathrm{H}$	$8.77\!\times\!10^5$	$^{27}_{13}$ Al	51.1	⁴⁸ Ti	$< 10^{-4}$	
$_2$ He	$2.05{}^{1.00}0.26$	$1.76^{7.49}0.33$	$2.41^{340}0.13$	2.12^{-30}	0.10	2.37	$^{2}\mathrm{H}$	35	$^{28}_{14}$ Si	580	⁴⁹ Ti	$< 10^{-4}$	
${}_{^{7}\mathrm{Li}}^{7}a$		$1.10^{12.0}0.16$	$2.72^{355}0.13$	1.90			3_2 He	$< 10^{-4}$	²⁹ Si	35	⁵⁰ Ti	$< 10^{-4}$	
$_{6}C$	$1.00^{1.10}0.19$	$1.98^{6.54}0.31$	$2.43^{348}0.17$	2.12	•••		⁴ He	$7.74\!\times\!10^4$	³⁰ Si	24.7	${}^{50}_{23}{ m V}$	$< 10^{-4}$	
$^{14}_{7}{ m N}$	$1.00^{\ 1.30} 0.17$	$1.96^{7.00}0.20$	$2.46^{300}0.17$	1.90			⁶ ₃ Li	$< 10^{-4}$	$^{31}_{15}{ m P}$	5.7	^{51}V	$< 10^{-4}$	
80	$0.95^{0.90}0.18$	$1.99^{7.50}0.30$	$2.46^{365}0.17$	2.13			⁷ Li	52	$^{32}_{16}S$	82.1	$^{50}_{24}$ Cr	4	
₉ F	$0.20^{1.50}0.19$	$1.97^{7.00}0.20$	$2.48^{355}0.17$	2.14			$^{7}_{4}$ Be	0	³³ S	0.306	⁵¹ Cr	0	
10Ne	$0.60^{1.15}0.17$	$1.92^{9.42}0.26$	$2.44^{355}0.17$	1.97			⁹ Be	$< 10^{-4}$	^{34}S	3.42	⁵² Cr	11.1	
₁₁ Na	$0.50^{0.75}0.17$	$1.98^{7.00}0.21$	$2.49^{355}0.17$	2.14			¹⁰ Be	$< 10^{-4}$	^{36}S	4.28×10^{-4}	⁵³ Cr	3.01×10^{-3}	
$_{12}Mg$	$0.20^{0.85}0.12$	$1.99^{7.00}0.23$	$2.48^{355}0.17$	2.15			${}^{10}_{5}B$	1.80×10^{-4}	$^{35}_{17}$ Cl	2.5	$^{54}\mathrm{Cr}$	0.5	
$_{13}Al$	$0.20^{0.60}0.17$	$2.04^{7.00}0.20$	$2.48^{355}0.17$	2.14			^{11}B	7.42×10^{-4}	³⁷ Cl	1.17×10^{-3}	$^{53}_{25}Mn$	12.6	
$_{14}$ Si	$0.20^{0.85}0.17$	$1.97^{7.00}0.26$	$2.47^{355}0.17$	2.19			${}^{12}_{6}C$	2720	$^{36}_{18}{ m Ar}$	11.4	55 Mn	2.9	
$_{15}P$	$0.25{}^{1.60}0.19$	$1.95^{7.00}0.20$	$2.48^{355}0.17$	2.14			¹³ C	$< 10^{-4}$	³⁸ Ar	0.74	$^{54}_{26}$ Fe	30.1	
$_{16}S$	$0.80{}^{1.30}0.17$	$1.96^{7.00}0.20$	$2.49^{355}0.17$	2.14			${}^{14}_{7}{ m N}$	207	40 Ar	1.74×10^{-3}	⁵⁵ Fe	0	
$_{17}$ Cl	$1.10^{\ 1.50} \ 0.17$	$1.98^{7.20}0.20$	$2.53^{355}0.17$	2.14			15 N	$< 10^{-4}$	$^{39}_{19}{ m K}$	1.39	⁵⁶ Fe	515	
18Ar	$0.20{}^{1.30}0.17$	$1.96^{7.00}0.20$	$2.46^{355}0.17$	2.09			$^{16}_{8}O$	3510	40 K	2.80	⁵⁷ Fe	17.7	
$_{19}K$	$0.20{}^{1.40}0.15$	$1.96^{7.00}0.20$	$2.53^{355}0.17$	2.14			170	$< 10^{-4}$	41 K	3.34×10^{-4}	⁵⁸ Fe	5.34	
₂₀ Ca	$0.30^{1.00}0.11$	$2.07^{7.00}0.20$	$2.48^{355}0.17$	2.14			^{18}O	1.29	$^{40}_{20}$ Ca	36.1	$^{59}_{27}$ Co	1.40	
$_{21}$ Sc	$0.20{}^{1.40}0.17$	$1.97^{7.00}0.22$	$2.53^{355}0.17$	2.14			${}^{19}_{9}F$	0.95	⁴¹ Ca	1.97	⁵⁸ 28Ni	22.3	
22Ti	$1.50^{0.90}0.17$	$1.98^{7.00}0.22$	$2.57^{355}0.17$	2.14			$^{20}_{10}$ Ne	338	⁴² Ca	$< 10^{-4}$	⁵⁹ Ni	0	
$_{23}V$	$1.10^{0.80}0.17$	$1.98^{7.00}0.22$	$2.53^{355}0.17$	2.14			²¹ Ne	3.56×10^{-3}	⁴³ Ca	$<\!10^{-4}$	⁶⁰ Ni	8.99	
$_{24}$ Cr	$1.70^{0.65}0.17$	$1.99^{7.00}0.20$	$2.48^{355}0.17$	2.14			22 Ne	107	⁴⁴ Ca	$< 10^{-4}$	⁶¹ Ni	0.599	
$_{25}$ Mn	$0.20^{0.85}0.10$	$2.08^{7.00}0.20$	$2.48^{355}0.17$	2.14			²³ 11Na	24.1	⁴⁸ Ca	0.11	⁶² Ni	1.43	
₂₆ Fe	$0.27 {}^{1.04} 0.18$	$1.99^{7.00}0.20$	$2.51^{355}0.17$	2.19			$^{24}_{12}$ Mg	490	$^{45}_{21}$ Sc	1.46	⁶⁴ Ni	0.304	
27Co	$0.80^{0.70}0.15$	$1.98^{7.00}0.20$	$2.49^{355}0.17$	2.14			^{25}Mg	70	$\frac{46}{22}$ Ti	4.9	• • •		
28Ni	$1.50^{\ 0.65} \ 0.17$	$1.98^{7.00}0.20$	$2.48^{355}0.17$	2.14			²⁶ Mg	90	⁴⁷ Ti	$< 10^{-4}$			

Full description of CR abundances: Source vs Propagated

Interstellar spectra measured by Voyager-1

All Z ≤ 28 are well reproduced

Our website provides numerical LISs, analytical formulas and plots

Ø-

LISs will be futher fine-tuned and updated on the website using incoming AMS-02 measurements

2020 Achievements - 2021 Resolutions

- ✓ All cosmic rays species with Z ≤ 28 predicted with GALPROP plus HelMod
- ✓ General reference framework for incoming Collaboration measurements and astroparticle community
- ✓ Extension of LISs validity up to 100 TeV/n scale
- ✓ Study of high mass nuclei, abundances and possible anomalous secondaries
- ✓ Iron spectrum and its fine features (ongoing)

- ✓ High mass primary/half-primary (Na-Al-S) and secondaries (Fluorine);
- ✓ Iron/sub Iron predictions
- ✓ Isotopes physics (d, Li, Be, B...)
- ✓ Fundamental propagation questions: testing injection vs diffusive breaks scenarios, possible nearby sources and pre-knee new behaviors

Backup

Iron

- Most of CR iron at low energies is local and may harbor some features associated with relatively recent supernova activity in the solar neighborhood (Local Bubble).
- The analysis of iron spectrum together with Voyager 1 and ACE-CRIS data reveals an unexpected bump in the iron spectrum and in the Fe/He, Fe/O, and Fe/Si ratios at 1–2 GV, while a similar feature in the spectra of He, O, Si, and in their ratios is absent, hinting at a local source of low-energy CRs.
- The found excess fits well with recent discoveries of radioactive Fe60 deposits in terrestrial and lunar samples, and in CRs.

HEAO and AMS-02 data are not compatible for iron, so we had to renormalize Iron to AMS-02: the only way to recover ACE and Voyager-1 data is to introduce a bump in an unknown Fe isotope (Fe60) at the GV scale. Future anomalies in other primary cosmic rays will corroborate this finding

The Propagation Scheme in the Milky Way

