
A NEW DST FOR AMS-ITALY
V. FORMATO - 11/03/2021 - AMS ITALY MEETING

V. FORMATO - A NEW DST FOR AMS-ITALY

MOTIVATION

Until now each analysis group has been working with its own set of data. While
this is certainly fine, on the long run it is introducing a few issues:

▸ Groups are competing for resources for ntuple production 
Usually happens when there is a new extension/pass

▸ Difficulty cross-checking/ debugging / exchanging informations between
groups (each one speaks its own "language")

▸ Increasing disk requests to accomodate N DST sets, some of which are
"overlapping"

2

V. FORMATO - A NEW DST FOR AMS-ITALY

SOLUTION AND REQUIREMENTS

▸ Have one DST for the whole AMS-Italy

▸ It must be suited for all ongoing and near-future analyses

▸ It should be performant (read only what needed)

▸ It should be as light as possible (store only what’s available)

▸ It should be easy to read and use

3

NAIA: Ntuples (for) AMS-Italy Analysis

V. FORMATO - A NEW DST FOR AMS-ITALY

SOLUTION AND REQUIREMENTS

▸ It must be suited for all ongoing and near-future
analyses

▸ Process ALL events.

▸ Detailed list of all needed variables from every
analysis group.

▸ Several possibilities for versioning and addition
of new variables in the future. Still TBD.

4

V. FORMATO - A NEW DST FOR AMS-ITALY

SOLUTION AND REQUIREMENTS

▸ Should be performant (read only what needed)

This requires careful thinking of the data model structure:

Plain leaves make this hard to handle (due to having to call TBranch::GetEntry on each single branch
before reading the values).  
This could be hidden away behind getters and helper functions but it becomes quickly hard to maintain as
the number of variables grows. 
We discard the "plain leaves" option and opt to group variables in "container" classes, meant to hold
variables from the same subdetector, to ease logic compartimentalization.

We chose to implement this "read on demand" behavior in a base class and apply it to all detector
information.

5

V. FORMATO - A NEW DST FOR AMS-ITALY

CONTAINER CLASSES

A container class is meant to just "hold
data"

Each subdetector /element has one or
more associated container classes

"Base" container classes hold the variables
used most often

6

V. FORMATO - A NEW DST FOR AMS-ITALY

CONTAINER CLASSES

A container class is meant to just "hold
data"

Each subdetector /element has one or
more associated container classes

"Base" container classes hold the variables
used most often, "Plus" container classes
hold variables that won’t be needed by
everyone, or may be needed less
frequently.

7

V. FORMATO - A NEW DST FOR AMS-ITALY

READ ON DEMAND
The "read on demand" capability is delegated to
a generic class, called OnDemandContainer

8

template <class T> class OnDemandContainer {
public:
 OnDemandContainer() = default;

 void LoadEvent() {
 if (!cacheIsValid) {
 m_branch->GetEntry(m_treeEntry, true);
 cacheIsValid = true;
 }
 }

 void SetTreeEntry(unsigned long long treeEntry) {
 if (treeEntry == m_treeEntry)
 return;
 m_treeEntry = treeEntry;
 cacheIsValid = false;
 }

 void Branch(TTree *tree) { tree->Branch(T::BranchName.c_str(), static_cast<T *>(this)); }

 void SetBranchAddress(TTree *tree) {
 // ROOT needs the address of the pointer to the buffer object.
 myPtrAddress = static_cast<T *>(this);
 tree->SetBranchAddress(T::BranchName.c_str(), &myPtrAddress);
 m_branch = tree->GetBranch(T::BranchName.c_str());
 }

 T *operator->() {
 LoadEvent();
 return static_cast<T *>(this);
 }

private:
 T *myPtrAddress; //!
 TBranch *m_branch = nullptr; //!
 unsigned long long m_treeEntry = std::numeric_limits<unsigned long long>::max(); //!

 mutable bool cacheIsValid = false; //!
};

V. FORMATO - A NEW DST FOR AMS-ITALY

READ ON DEMAND
The "read on demand" capability is delegated to
a generic class, called OnDemandContainer

‣ Given a TTree it handles the creation/reading
of the branch for the corresponding container
class

9

template <class T> class OnDemandContainer {
public:
 OnDemandContainer() = default;

 void LoadEvent() {
 if (!cacheIsValid) {
 m_branch->GetEntry(m_treeEntry, true);
 cacheIsValid = true;
 }
 }

 void SetTreeEntry(unsigned long long treeEntry) {
 if (treeEntry == m_treeEntry)
 return;
 m_treeEntry = treeEntry;
 cacheIsValid = false;
 }

 void Branch(TTree *tree) { tree->Branch(T::BranchName.c_str(), static_cast<T *>(this)); }

 void SetBranchAddress(TTree *tree) {
 // ROOT needs the address of the pointer to the buffer object.
 myPtrAddress = static_cast<T *>(this);
 tree->SetBranchAddress(T::BranchName.c_str(), &myPtrAddress);
 m_branch = tree->GetBranch(T::BranchName.c_str());
 }

 T *operator->() {
 LoadEvent();
 return static_cast<T *>(this);
 }

private:
 T *myPtrAddress; //!
 TBranch *m_branch = nullptr; //!
 unsigned long long m_treeEntry = std::numeric_limits<unsigned long long>::max(); //!

 mutable bool cacheIsValid = false; //!
};

V. FORMATO - A NEW DST FOR AMS-ITALY

READ ON DEMAND
The "read on demand" capability is delegated to
a generic class, called OnDemandContainer

‣ Given a TTree it handles the creation/reading
of the branch for the corresponding container
class

‣ Caches the call to TBranch::GetEntry, as
long as the underlying event didn’t change.

‣ Exposes member variables of the container
class via the -> operator, and adds the caching
behavior.

10

template <class T> class OnDemandContainer {
public:
 OnDemandContainer() = default;

 void LoadEvent() {
 if (!cacheIsValid) {
 m_branch->GetEntry(m_treeEntry, true);
 cacheIsValid = true;
 }
 }

 void SetTreeEntry(unsigned long long treeEntry) {
 if (treeEntry == m_treeEntry)
 return;
 m_treeEntry = treeEntry;
 cacheIsValid = false;
 }

 void Branch(TTree *tree) { tree->Branch(T::BranchName.c_str(), static_cast<T *>(this)); }

 void SetBranchAddress(TTree *tree) {
 // ROOT needs the address of the pointer to the buffer object.
 myPtrAddress = static_cast<T *>(this);
 tree->SetBranchAddress(T::BranchName.c_str(), &myPtrAddress);
 m_branch = tree->GetBranch(T::BranchName.c_str());
 }

 T *operator->() {
 LoadEvent();
 return static_cast<T *>(this);
 }

private:
 T *myPtrAddress; //!
 TBranch *m_branch = nullptr; //!
 unsigned long long m_treeEntry = std::numeric_limits<unsigned long long>::max(); //!

 mutable bool cacheIsValid = false; //!
};

V. FORMATO - A NEW DST FOR AMS-ITALY

READ ON DEMAND

The only thing left is to attach the "read on
demand" capability to each container class,
and this is done via inheritance.

The nice part of the trick is that we only need
to write and take care of container classes, the
"read on demand" part comes almost for free.

(as long as we remember to define the
corresponding branch name)

11

class TofBase : public OnDemandContainer<TofBase>, public TofBaseData {
public:
 static const std::string BranchName;

 TofBase() : TofBaseData(), OnDemandContainer() {}
};

class TofPlus : public OnDemandContainer<TofPlus>, public TofPlusData {
public:
 static const std::string BranchName;

 TofPlus() : TofPlusData(), OnDemandContainer() {}
};

V. FORMATO - A NEW DST FOR AMS-ITALY

SAVING SPACE
▸ Should be as light as possible (store only what’s available)

▸ We don’t want to write missing info. 
(e.g. if no hit on L1, don’t write 0 or -9999 or whatever value to keep track of
this. We don’t want to write anything at all)

This can be achieved by using associative containers (as std::map) and trying to
find patterns in the requested variables

12

V. FORMATO - A NEW DST FOR AMS-ITALY

SAVING SPACE
▸ Should be as light as possible (store only what’s available)

▸ We don’t want to write missing info. 
(e.g. if no hit on L1, don’t write 0 or -9999 or whatever value to keep track of
this. We don’t want to write anything at all)

This can be achieved by using associative containers (as std::map) and trying to
find patterns in the requested variables:

you can still do

(but you generally want to check that the required layer info actually exists)

13

// one number per "layer"
template <class T> using LayerVariable = std::map<unsigned int, T>;

float L1Xpos = event.trTrackPlus->TrTrackHitPosX[0];

// if there is x there is always also y
if (event.trTrackPlus->TrTrackHitPosX.find(0) != end(event.trTrackPlus->TrTrackHitPosX)) {
 L1Occupancy->Fill(event.trTrackPlus->TrTrackHitPosX[0], event.trTrackPlus->TrTrackHitPosY[0]);
}

V. FORMATO - A NEW DST FOR AMS-ITALY

SAVING SPACE
You will find several of these "one value for each X type" variables, where X could
be charge reconstruction method, track fitting algorithm, ECAL BDT estimator,
and so on…

14

// one number per charge reconstruction type
template <class T> using TrackChargeVariable = std::map<TrTrack::ChargeRecoType, T>;
// one number per span type, for each fit type. (Use as Rigidity[fit][span])
template <class T> using TrackFitVariable = std::map<TrTrack::Fit, std::map<TrTrack::Span, T>>;
// one number per for each fit height position. (Use as TrTrackFitPos[heightPos]...)
template <class T> using TrackFitPosVariable = std::map<TrTrack::FitPositionHeight, T>;

(example for TrTrack)

But using plain numbers to access these values leads often to confusion and
butchers readability by other people.  
For this reason there are specific enums designed to help with this issue, so that
you can write

and it’s immediately clear which rigidity you are using. 
(Of course, we will provide a doxygen page where all this info will be available.)

float rig = event.trTrackBase->RigidityCorr[TrTrack::Fit::Kalman][TrTrack::Span::InnerL1];

V. FORMATO - A NEW DST FOR AMS-ITALY

AVAILABLE CONTAINERS
▸ Header
▸ EventSummary

▸ DAQ

▸ TofBase
▸ TofPlus
▸ TofBaseStandalone
▸ TofPlusStandalone

▸ EcalBase
▸ EcalPlus

15

▸ TrTrackBase
▸ TrTrackPlus

▸ TrdKBase
▸ TrdKBaseStandalone

▸ RichBase
▸ RichPlus

▸ UnbExtHitBase

▸ MCTruthBase
▸ MCTruthPlus

Lightweight info: meant to
decide if event is
interesting or not

Tof variables 
("standalone", means
reconstructed without
tracker info)

<latexit sha1_base64="Tg9OhEX37oFbd+i19Xd0g/z82Vk=">AAACB3icjVDLSgNBEOyNrxhfUY9eBoPgQcKuBPUY9OIxinlAsoTZ2dlkyMzsMjMrhCUfIHjV3/AmXv0M/8JPcDbJQSWCBQ1FVXfTXUHCmTau++EUlpZXVteK66WNza3tnfLuXkvHqSK0SWIeq06ANeVM0qZhhtNOoigWAaftYHSV++17qjSL5Z0ZJ9QXeCBZxAg2VrrtTfrlild1p0B/kwrM0eiXP3thTFJBpSEca9313MT4GVaGEU4npV6qaYLJCA9o11KJBdV+Nr10go6sEqIoVrakQVP1+0SGhdZjEdhOgc1Q//ZycaEX6nzhSSAWud3URBd+xmSSGirJ7Iwo5cjEKA8FhUxRYvjYEkwUs58gMsQKE2OjK/0votZp1Turuje1Sv1yHlYRDuAQjsGDc6jDNTSgCQQieIQneHYenBfn1XmbtRac+cw+/IDz/gXA8ZmF</latexit>

}

<latexit sha1_base64="Tg9OhEX37oFbd+i19Xd0g/z82Vk=">AAACB3icjVDLSgNBEOyNrxhfUY9eBoPgQcKuBPUY9OIxinlAsoTZ2dlkyMzsMjMrhCUfIHjV3/AmXv0M/8JPcDbJQSWCBQ1FVXfTXUHCmTau++EUlpZXVteK66WNza3tnfLuXkvHqSK0SWIeq06ANeVM0qZhhtNOoigWAaftYHSV++17qjSL5Z0ZJ9QXeCBZxAg2VrrtTfrlild1p0B/kwrM0eiXP3thTFJBpSEca9313MT4GVaGEU4npV6qaYLJCA9o11KJBdV+Nr10go6sEqIoVrakQVP1+0SGhdZjEdhOgc1Q//ZycaEX6nzhSSAWud3URBd+xmSSGirJ7Iwo5cjEKA8FhUxRYvjYEkwUs58gMsQKE2OjK/0votZp1Turuje1Sv1yHlYRDuAQjsGDc6jDNTSgCQQieIQneHYenBfn1XmbtRac+cw+/IDz/gXA8ZmF</latexit>

}
<latexit sha1_base64="Tg9OhEX37oFbd+i19Xd0g/z82Vk=">AAACB3icjVDLSgNBEOyNrxhfUY9eBoPgQcKuBPUY9OIxinlAsoTZ2dlkyMzsMjMrhCUfIHjV3/AmXv0M/8JPcDbJQSWCBQ1FVXfTXUHCmTau++EUlpZXVteK66WNza3tnfLuXkvHqSK0SWIeq06ANeVM0qZhhtNOoigWAaftYHSV++17qjSL5Z0ZJ9QXeCBZxAg2VrrtTfrlild1p0B/kwrM0eiXP3thTFJBpSEca9313MT4GVaGEU4npV6qaYLJCA9o11KJBdV+Nr10go6sEqIoVrakQVP1+0SGhdZjEdhOgc1Q//ZycaEX6nzhSSAWud3URBd+xmSSGirJ7Iwo5cjEKA8FhUxRYvjYEkwUs58gMsQKE2OjK/0votZp1Turuje1Sv1yHlYRDuAQjsGDc6jDNTSgCQQieIQneHYenBfn1XmbtRac+cw+/IDz/gXA8ZmF</latexit>

} Ecal variables

<latexit sha1_base64="Tg9OhEX37oFbd+i19Xd0g/z82Vk=">AAACB3icjVDLSgNBEOyNrxhfUY9eBoPgQcKuBPUY9OIxinlAsoTZ2dlkyMzsMjMrhCUfIHjV3/AmXv0M/8JPcDbJQSWCBQ1FVXfTXUHCmTau++EUlpZXVteK66WNza3tnfLuXkvHqSK0SWIeq06ANeVM0qZhhtNOoigWAaftYHSV++17qjSL5Z0ZJ9QXeCBZxAg2VrrtTfrlild1p0B/kwrM0eiXP3thTFJBpSEca9313MT4GVaGEU4npV6qaYLJCA9o11KJBdV+Nr10go6sEqIoVrakQVP1+0SGhdZjEdhOgc1Q//ZycaEX6nzhSSAWud3URBd+xmSSGirJ7Iwo5cjEKA8FhUxRYvjYEkwUs58gMsQKE2OjK/0votZp1Turuje1Sv1yHlYRDuAQjsGDc6jDNTSgCQQieIQneHYenBfn1XmbtRac+cw+/IDz/gXA8ZmF</latexit>

} Tracker track variables

<latexit sha1_base64="Tg9OhEX37oFbd+i19Xd0g/z82Vk=">AAACB3icjVDLSgNBEOyNrxhfUY9eBoPgQcKuBPUY9OIxinlAsoTZ2dlkyMzsMjMrhCUfIHjV3/AmXv0M/8JPcDbJQSWCBQ1FVXfTXUHCmTau++EUlpZXVteK66WNza3tnfLuXkvHqSK0SWIeq06ANeVM0qZhhtNOoigWAaftYHSV++17qjSL5Z0ZJ9QXeCBZxAg2VrrtTfrlild1p0B/kwrM0eiXP3thTFJBpSEca9313MT4GVaGEU4npV6qaYLJCA9o11KJBdV+Nr10go6sEqIoVrakQVP1+0SGhdZjEdhOgc1Q//ZycaEX6nzhSSAWud3URBd+xmSSGirJ7Iwo5cjEKA8FhUxRYvjYEkwUs58gMsQKE2OjK/0votZp1Turuje1Sv1yHlYRDuAQjsGDc6jDNTSgCQQieIQneHYenBfn1XmbtRac+cw+/IDz/gXA8ZmF</latexit>

} TRD variables

<latexit sha1_base64="Tg9OhEX37oFbd+i19Xd0g/z82Vk=">AAACB3icjVDLSgNBEOyNrxhfUY9eBoPgQcKuBPUY9OIxinlAsoTZ2dlkyMzsMjMrhCUfIHjV3/AmXv0M/8JPcDbJQSWCBQ1FVXfTXUHCmTau++EUlpZXVteK66WNza3tnfLuXkvHqSK0SWIeq06ANeVM0qZhhtNOoigWAaftYHSV++17qjSL5Z0ZJ9QXeCBZxAg2VrrtTfrlild1p0B/kwrM0eiXP3thTFJBpSEca9313MT4GVaGEU4npV6qaYLJCA9o11KJBdV+Nr10go6sEqIoVrakQVP1+0SGhdZjEdhOgc1Q//ZycaEX6nzhSSAWud3URBd+xmSSGirJ7Iwo5cjEKA8FhUxRYvjYEkwUs58gMsQKE2OjK/0votZp1Turuje1Sv1yHlYRDuAQjsGDc6jDNTSgCQQieIQneHYenBfn1XmbtRac+cw+/IDz/gXA8ZmF</latexit>

} Rich variables

External layers hits
(standalone)

<latexit sha1_base64="Tg9OhEX37oFbd+i19Xd0g/z82Vk=">AAACB3icjVDLSgNBEOyNrxhfUY9eBoPgQcKuBPUY9OIxinlAsoTZ2dlkyMzsMjMrhCUfIHjV3/AmXv0M/8JPcDbJQSWCBQ1FVXfTXUHCmTau++EUlpZXVteK66WNza3tnfLuXkvHqSK0SWIeq06ANeVM0qZhhtNOoigWAaftYHSV++17qjSL5Z0ZJ9QXeCBZxAg2VrrtTfrlild1p0B/kwrM0eiXP3thTFJBpSEca9313MT4GVaGEU4npV6qaYLJCA9o11KJBdV+Nr10go6sEqIoVrakQVP1+0SGhdZjEdhOgc1Q//ZycaEX6nzhSSAWud3URBd+xmSSGirJ7Iwo5cjEKA8FhUxRYvjYEkwUs58gMsQKE2OjK/0votZp1Turuje1Sv1yHlYRDuAQjsGDc6jDNTSgCQQieIQneHYenBfn1XmbtRac+cw+/IDz/gXA8ZmF</latexit>

} MC Truth variables

V. FORMATO - A NEW DST FOR AMS-ITALY

EVENT LOOPING

Taking inspiration from gbatch we introduce
a Event class, but in our case the event is
just a collection of containers and nothing
more.

16

V. FORMATO - A NEW DST FOR AMS-ITALY

EVENT LOOPING

Taking inspiration from gbatch we introduce
a Event class, but in our case the event is
just a collection of containers and nothing
more.

The Header container also stores a bit-mask
that will encode wether the event belongs
or not in a given set of categories. This will
be extremely helpful to skip uninteresting
events without having to read anything else.

(full list of categories to be finalized)

17

V. FORMATO - A NEW DST FOR AMS-ITALY

THE CHAIN

The Event object is always provided
by a Chain class.  
Also here the approach is derived
from gbatch. The idea is that you just
have to:

‣ Declare a chain

‣ Add files to it

‣ Loop and get each event -> do
analysis on it

18

using namespace NAIA;

int main(int argc, char const *argv[]) {
 NAIAChain chain(NAIA::SingleTreeChain::AccessMode::Read);
 chain.Add("test.root");

 chain.SetupBranches();

 unsigned long long nEntries = chain.GetEntries();
 spdlog::info("{} entries in the chain", nEntries);

 for (unsigned long long iEv = 0; iEv < nEntries; iEv++) {
 spdlog::info("Entry {}", iEv);

 auto event = chain.GetEvent(iEv);

 chain.GetEventFileInfo().Dump();
 chain.GetEventRTIInfo().Dump();

 fmt::print("Mask: {}\n", to_string_binary<32>(event.header->Mask()));
 event.header->Dump();
 }

 return 0;
}

V. FORMATO - A NEW DST FOR AMS-ITALY

THE CHAIN

19

using namespace NAIA;

int main(int argc, char const *argv[]) {
 NAIAChain chain(NAIA::SingleTreeChain::AccessMode::Read);
 chain.Add("test.root");

 chain.SetupBranches();

 unsigned long long nEntries = chain.GetEntries();
 spdlog::info("{} entries in the chain", nEntries);

 for (unsigned long long iEv = 0; iEv < nEntries; iEv++) {
 spdlog::info("Entry {}", iEv);

 auto event = chain.GetEvent(iEv);

 chain.GetEventFileInfo().Dump();
 chain.GetEventRTIInfo().Dump();

 fmt::print("Mask: {}\n", to_string_binary<32>(event.header->Mask()));
 event.header->Dump();
 }

 return 0;
}

In addition to the event tree we also
store two smaller trees with the RTI
info for each run, and the info of the
original file that was processed

You can either get the RTI/File info
for the current event, or get the
whole RTI/File info tree and loop on
it yourself (avoiding a loop on the
events)

V. FORMATO - A NEW DST FOR AMS-ITALY

SUPPORT INFRASTRUCTURE
Lastly, the code is hosted on the
CERN gitlab instance, under the AMS-
Italy group name.

20

V. FORMATO - A NEW DST FOR AMS-ITALY

SUPPORT INFRASTRUCTURE
Lastly, the code is hosted on the
CERN gitlab instance, under the AMS-
Italy group name.

Compilation is tested for each commit
on a generic CentOS7 environment
(gcc 7.3 + ROOT 6.18/04) 
A setenv is available for this
environment, gcc and ROOT provided
on cvmfs

Plan to create a dedicated AMS-Italy
cvmfs at CERN

21

V. FORMATO - A NEW DST FOR AMS-ITALY

SIMPLE SETUP

Everything is provided by two libraries:

‣ libNAIAChain.so

‣ libNAIAContainers.so

Link/load those and that’s it.

If you plan on using CMake the setup consists of just three lines:

22

find_package(NAIA REQUIRED)

add_executable(testReadNtp src/testReadNtp.cpp)
target_link_libraries(testReadNtp PUBLIC NAIA::NAIAChain)

V. FORMATO - A NEW DST FOR AMS-ITALY

BONUS TRACK: AMS-ITALY DISCORD SERVER

We had this setup for the event on
Parmitano’s reentry from the ISS.

On this server there is a channel
dedicated to the DST topic. That is
the recommended
communication channel for
questions/help with the DST.

(We can (should) use this server
also for all other kinds of AMS-
Italy related communications)

23

V. FORMATO - A NEW DST FOR AMS-ITALY

NEXT STEPS

Project is now ready for beta testing. All the functionalities
requested initially have been implemented.

5000 random pass7 runs processed at CNAF

I would like to call a kickoff meeting with at least one
designated tester from each analysis group to:

‣ Go in detail on the (almost nonexistent) setup required to
get up and running on the new data

‣ Collect feedback / feature requests after each tester tries to
reproduce a small portion of his analysis on the new DST

After this testing phase the first release will be tagged and full
production of pass7 and MC samples will begin.

24

