

a low cost solution for a large-area, low-noise SiPM pixel

Daniel Guberman

INFN Pisa and Università di Siena daniel.guberman@pi.infn.it

Outline

- 1. Introduction: Large-area SiPM pixels
- 2. The Photo-Trap Project
- 3. Possible applications

4. Notes on the expected performance

Like Photomultiplier tubes, SiPMs are fast photosensors, sensitive to low light levels

computationalarchaeology.wordpress.com

SiPMs vs PMTs

Compared to photomultiplier tubes (PMTs), SiPMs offer several advantages:

- High photodetection efficiency (PDE)
- Better timing performance
- Single photoelectron resolution

Figure 5 Oscilloscope shot showing the discrete nature of the SPM output when illuminated by brief pulses of low-level light.

• Low voltage operation

- Insensitivity to magnetic fields
- Robustness
- Compactness...

Main drawback: pixel size

- SiPMs are typically available in sizes $\leq 6x6 \text{ mm}^2$
- **Capacitance** and **dark count rate (DCR)** increase with size
- This a severe limitation for building large cameras/experiments:

- More pixels needed to fill a camera
- More readout channels
- Cost and complexity of the readout increases

ww-sk.icrr.u-tokvo.ac

Some attempts to build Large pixels based on SiPMs

Dark Side \rightarrow 24 cm² area SiPM detector

Works at 80K (Dark counts and electronic noise are reduced by orders of magnitude)

Analog sum of SiPMs

The individual currents of ~ 10 SiPMs are summed into a single output

Several prototypes in VHE astrophysics. Largest one sums 14 SiPMs of 6x6 mm² (~ 5 cm² area) [Mallamaci et al. (2019)]

- Scalability in size is limited:

- * Noise severely harms single photoelectron resolution
- ^{*} DCR still increase linearly with the area.
- Pixel cost scales with pixel area

D'Inecco et al. (20

2021.03.31

Fink et al., (2016)

The Light-Trap

A **Light-Trap pixel** consists of a **plastic piece**, **doped** with some **wavelength shifter (WLS)**, coupled to a **SiPM**.

The Light-Trap idea

Proof-of-concept Light-Trap pixel developed at IFAE, Spain: 15 mm diameter.

- Pixel area ~10-100 times area of a single SiPM.
- Pixel noise = noise of a single SiPM
- Pixel cost ~ **cost of a single SiPM** (if the cost of the plastic is low)

D. Guberman et al. (2019), The Light-Trap: A novel concept for a large SiPM-based pixel for Very High Energy gamma-ray astronomy and beyond, NIM-A, 923, 19

Light-Trap vs Analog sum of SiPMs

Guberman, Cortina, Ward, et al. (2019)

- Very good single photoelectron resolution over a large area
- Low DCR and capacitance (even at room temperature)
- ч Cheap
- In principle easily scalable to larger sizes and adaptable to different wavelengths.

 $n_{air}=1.0$

Npmma=1.5

Fink, Hahn, Guberman, et al., (2016)

- Low efficiency
- * Only works if light arrives from a **medium with** $n \approx 1$

Optical coupling

< 41° (TIR angle)

The Photo-Trap Project

Photo-Trap attacks the two limitations of the Light-Trap by **introducing a 1-D Photonic Crystal filter** on top.

<u>Proof-of-concept</u>: We will build a **pixel of ~4×4 cm**² sensitive to **near-UV light (300-400 nm**, where Cherenkov light peaks) incident from a medium with **n ~ 1.5** (typical of plastics and glasses).

2021.03.31

1-D Photonic crystals (a.k.a. dichroic/interference filter)

- Alternating thin (~50-100 nm) layers of high and low refractive index materials are deposited on a substrate to build a filter.
- By properly choosing the refractive index (n_1, n_2) , the thickness of each layer (d_1, d_2) and the number of layers we can achieve **high** reflectivity in a certain wavelength range

2021.03.31

A Photonic crystal for Photo-Trap

In Photo-Trap we will

- 1. Design a Photonic Crystal (code by A. Paghi, UNIPI)
- 2. Build a Photonic crystal
- 3. Integrate it into a proof-of-concept Photo-Trap pixel

<u>CHALLENGE</u>: The Photonic Crystal should have

- 1. High Transmission at 300-390 nm
- 2. High Reflectivity at 400-500 nm
- 3. Low dependence on the incident angle

2021.03.31

Filter response depends on the incident angle...

Normal incidence

Project Roadmap

Within two years we plan to

- Optimize the pixel geometry through Geant4 simulations
- Design and build the photonic crystal
- Build prototype pixels
- Characterize those prototypes in the lab
- Perform a field test

Some possible applications

Image credits: HAWC/WIPAC, Kaptanoglu, Saint-Gobain, Askins et al.

1. Water Cherenkov Detectors

In large volumes efficiency can be increased with a **larger collection area**

Sensitivity = Detection Efficiency · Collection Area

Several **cheap pixels** can be distributed for better sampling the shower.

2021.03.31

2. Dark Matter and Neutrino experiments

Detection efficiency in LXe/LAr is (already) increased by using WLS.
There is also a tendency to go for larger volumes

ARAPUCA (DUNE)

UCLA (DarkSide)

3. Large scintillators

SPECT

Zeng et al., 2004

SiPM readout for scintillators offers compactness and flexibility. Covering large areas is difficult:

- High Cost
- Dark counts degrade energy resolution

Menge et al. (Saint-Gobain), 2018

2021.03.31

In general, Photo-Trap could be useful...

- When **efficiency loss** can be **compensated** with a **larger detection area**
- When **wavelength shifting** can **increase** the detection **efficiency**
- When **low noise** at **room temperature** is required
- When a **sensitivity** in a **specific wavelength** band is desired
- When **cost** is a limitation...

Notes on the expected performance (from Geant4 simulations)

Trapping Efficiency (TE)

 $TE = \frac{Nr \text{ of photons that hit the SiPM}}{Nr \text{ of incident photons}}$

Photon **hits** the SiPM

Photon escapes

Photon absorbed by reflector

Photon reflected before entering the detector

Note that $PDE(Photo-Trap) \simeq TE \cdot PDE(SiPM)$

TE in Geant4 Simulations

- 340 nm photons are fired from a medium with $n \sim 1.5$, perpendicular to the detector, all over the detector surface.
- Photons are tracked until they are absorbed, escape hit the SiPM.
- All relevant physics and material properties are simulated.

Trapping Efficiency = Nr of photons that hit the SiPM / Nr of simulated photons

2021.03.31

Factors affecting the TE

2021.03.31

For fixed goemetry and SiPM area...

2021.03.31

Pixel Geometry and SiPM area

Photo-Trap Area ~ 11 x SiPM Area

Photo-Trap Area ~ 44 x SiPM Area

2021.03.31

The Ideal Photo-Trap

2021.03.31

The Ideal Photo-Trap

A more realistic Photo-Trap with ideal PhC

2021.03.31

A more realistic PhC

2021.03.31

Expected TE: 20 x 20 mm² pixel

Photo-Trap Area ~ 11 x SiPM Area

Pixel sensitive area: 4 cm^2

SiPM area: 0.36 cm^2

Pixel size [mm ³]	SiPM area [mm ²]	TE @	40 nm			
		Ideal PhC	Prototype PhC			
20 x 20 x 6	6 x 6	52%	44%			
20 x 20 x 3	3 x 12	56%	48%			

Calculated *trapping efficiency*. A diffuse reflector (R~98% was considered) with 100 um gap between the WLS-doped plastic and the reflectors. 92% Quantum Efficiency for the WLS was considered. Optical coupling thickness: 100 um.

2021.03.31

Expected TE: 40 x 40 mm² pixel

Photo-Trap Area ~ 44 x SiPM Area

Pixel sensitive area: 16 cm^2

SiPM area: 0.36 cm^2

	Pixel size [mm ³]	SiPM area [mm ²]	TE @	340 nm			
			Ideal PhC	Prototype PhC			
~	40 x 40 x 6	6 x 6	44%	39%			
-	40 x 40 x 3	3 x 12	46%	36%			

Calculated *trapping efficiency*. A diffuse reflector ($R \sim 98\%$ was considered) with 100 um gap between the WLS-doped plastic and the reflectors. 92% Quantum Efficiency for the WLS was considered. Optical coupling thickness: 100 um.

Simulated PDE

For a 20 x 20 x 3 mm³ pixel with the prototype PhC, using a 3 x 12 mm² ON J-Series SiPM

Timing properties: 20 x 20 mm² pixel

Time resolution is dominated by:

- Re-emission time of the WLS
- Distance traveled by photons before reaching the SiPM (track length)

*Here "Arrival Time" is defined as the time it takes to the photons to reach the SiPM (i.e., they do not include the SiPM time resolution)

Timing properties: 40 x 40 mm² pixel

Time resolution is dominated by:

- Re-emission time of the WLS
- Distance traveled by photons before reaching the SiPM (track length)

*Here "Arrival Time" is defined as the time it takes to the photons to reach the SiPM (i.e., they do not include the SiPM time resolution)

Final Remarks

- **Trapping Efficiency** can be **increased** if using **more SiPMs per pixel** (cost also increases).
- The pixel can be **adapted** to achieve a **sensitivity** in the **wavelength band of interest.** Photonic crystal and WLS must be selected accordingly.
- After **two years** we will have developed a **proof-of-concept prototype**. There will be plenty of space for **further developments...**

Playroom for new developments (I)

- Number of SiPMs per pixel (position sensitive?)
- Pixel Geometry
- Direct deposition of the PhC filter in the WLS plastic

Playroom for new developments (II)

Photo-Trap team

INFN Pisa

- Andrea Rugliancich
- Carolin Wunderlich
- Ricardo Paoletti
- Daniel Guberman (PI)

Dipartimento di Ingegneria dell'Informazione (DII), Università di Pisa

- Alessandro Paghi
- Giuseppe Barillaro

Special thanks to J. Cortina (CIEMAT), the 'father' of this project and to all who participated in the developments of the Light-Trap: D. Estrada, J.L. García, A. Mihi (ICMAB), J. E. Ward, E. Do Souto, O. Blanch (IFAE)

INFN Padova

- Cornelia Arcaro (RL)
- Mosè Mariotti
- Alessandro de Angelis

Backup

Sputtering

Schedule

		YEAR 1 - 2021										YEAR 2 - 2022														
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
WP1	Simulations																									M1: Final PhC
	Geometry optimization											Т	NF	N-P	I											design (pIa, pIb)
	Pixel performance																									
WP2	Photonic Crystal																									M2: Performance of pIa and pIb
	Design					M1											М3									
	Test sample												IE	т												
	Production																									M3: Final PhC
WP3	Pixel construction and testing					Hame	amats	u																		design (pII/pIc)
	Pixel holder]	INF	N P	I &	PD											
	SiPM readout PCB																									M4: Performance of pII/pIc
	Pixel integration											Ι	NF	N P	I											
	Performance evaluation												M2									М4				
	Tests in WCD]	INF	N P	I &	PD											

2021.03.31