

Coating Thermal Noise workshop summary Conveners: E. Cesarini, S. Reid, G. Cagnoli

Summary of Monday's session

- Discussion devoted to next future choice of coating recipe for A+/AdV+
 - R&D activitiy on IBS SiNx coatings
 - R&D activity on IBS TiO2:GeO2 coating
 - Status of multimaterial/ternary coatings

R&D on IBS SiNx coatings (M. Granata and M. Magnozzi)

- Low mechanical loss and high refractive index
- IBS SiNx single layer loss angle a factor three better than TiO2:Ta2O5
- SiNx still amorphous after annealing in air at 1000 °C for 10 h
- extinction coefficient still to high

R&D on IBS SiNx coatings (M. Granata and M. Magnozzi)

- substantial oxygen contamination observed in single-layer samples, likely from residual water pressure
- change of the protocol and oxygen contamination considerably reduced,
- current absorption still to high likely dominated by stoichiometry

H content and vertical gradient

measured with ERDA (SAFIR/Navier)

XPS data before and after sputtering (Roma1)

Presence of Oxygen evaluated by FTIR (Padova)

R&D on IBS SiNx coatings (M. Granata and M. Magnozzi)

- refractive index increased n(@1064 nm)=2.05
- index gradient is now negligible (Dn<1%)
- extinction decreased by 48%, still far from target:<1e-6

RESULTS & ROADMAP

roadmap

short-term objective: definitive assessment for A+ / AdV+

since April 19th:

 coater A
 single layer tests
 HR samples
 annealing tests

✓ completed
 ✓ completed
 ✓ a week

 coater B single-layer tests HR samples annealing tests

still ~2 weeks (list has been extended) ~2 weeks ~1 week

• mitigation of bubble-like defects (if any): ~4 weeks

NB: works in Grand Coater starting ~July

R&D on IBS TiO2:GeO2 coatings (G. Vajente and S. Khadka)

- Single layer results
- Very promising candidate for A+ coatings
- Annealing at 600°C for 100+ hours gives the best loss angle without crystallization

Parameter	Value	
Cation concentration, Ti/(Ti+Ge)	44%	
Refractive index at 1064 nm	1.88	
Density	3700 kg/m^3	
Young's modulus	$90.3 \pm 1.3 ~\mathrm{GPa}$	
Poisson ratio	0.24 ± 0.05	
Loss angle	$(0.96 \pm 0.18) \times 10^{-4}$	
Optical absorption for a QWL	$2.3\pm0.1~\mathrm{ppm}$	

TABLE I. Measured parameters for the best TiO_2 :GeO₂ mixture, after annealing at 600°C for 108 hours.

R&D on IBS TiO2:GeO2 coatings (G. Vajente and S. Khadka)

TEM image of SiO₂ / Ti:GeO₂ stack

187.1nm

186.6nm

143.9nm

144.6nm

- Multi-layer stacks of 10 and 40 layers total measured
- No evidence of excess loss in the stack
- Optical absorption of a 40 layer stack 3.4 ppm, still to high, but still room for improvements

CONLING44

100 run

R&D on IBS TiO2:GeO2 coatings (G. Vajente and S. Khadka)

- Main issue delamination/bubbles when annealing at 500°C and below
- It seems dependent on the **stresses** in the deposited film because bubbles reduce with deposition of lower stress silica
- The phenomenon is well known in IBS technique. Seen in ZrO2/SiO2, Nb2O5/SiO2, Ta2O5/SiO2
- According to LMA experience it is linked to Argon clustering
- Carmen suggested also a possible link with **Oxygen flux** used during growth DELAMINATION

Low-stress SiO2 layers

R&D on IBS TiO2:GeO2 coatings (G. Vajente and S. Khadka)

MEASUREMEN

Temperature dependent loss measurements of GeO2 and Ti-GeO2 using DPOs.

- For all IBS films studied in this work, cryogenic loss is found to be higher than RT loss.
- Unlike the RT loss, cryogenic loss of thin film GeO2 is lower than that of bulk GeO2 (from literature).
- > RT loss is seen to increase with Ti concentration
- Temperature dependent measurements are needed to study the energy landscape

Multimaterial coatings

- Use of more than two materials in coating stack
- Allows trade-off between thermal noise and absorption
- Possible motivations:
 - Reduce coating thermal noise
 - Reduce coating absorption
 - Reduce coating thickness directly reducing thermal noise, possible mitigation of possible defects during deposition, stress / annealing effects

IDEA

Multimaterial coatings

- Experimental demonstration of Ta₂O₅/SiO₂/a-Si/SiO₂ design
- Multimaterial loss and absorption behave as expected with annealing

EXPERIMENTAL DEMONSRATION

Tait et al., PRL 125 011102 (2020)

Room temperature – possible application to candidate coatings for A+, V+, ET-HF, CE to reduce optical absorption / reduce coating thickness

viable solution for HR stack:
Ta2O5/SiO2 + TiO2:GeO2/SiO2

TiO2:Ta2O5/SiO2 + SiNx/SiO2

Discussion questions - Monday

Recipe choice - planned for July 2021:

- Boundary condition: two Coating Pathfinders are not possible.
- ➤ Is there a clear winner between SiNx and TiO2:GeO2?
- > Do we need MM coating for both?
 - Complexity risk \uparrow Coating performance risk \downarrow ??
 - Any issue with annealing strategy (GeO2/Ta2O5 similar, however SiNx annealed ~900C first, then overcoat TaO2?)

How can (should) progress be supported during Pathfinder

- > Bubbles, defects and annealing remain a challenge.
 - Reducing adsorbed/implanted Ar during coating *e.g.* 'low-stress silica' from CSU?
 - Removing trapped Ar through annealing / minimising Ar aggregation through ramp time/steps
 - In 1 atm of O2, that O2 can diffuse ~3 um in 10 hours at 500 C (Fejer calculation from Williams 1965 Journal of the American Ceramic Society).
- Composition optimisation for TiO2:GeO2 important?

Summary of Wednesday's session

- Continued discussion devoted to next future choice of coating recipe for A+/AdV+
- Talk: Metrology open issues in GeNS measurements [Francesco Piergiovanni].
- Poster talks:
 - Properties of amorphous SiC films [Diana Lumaca]
 - Optical and mechanical characterization of ion-beam-sputtered MgF2 and AlF3 thin films [Matteo Bischi]
 - Performance of Optimized Ternary Coatings at Ambient and Cryo Temperatures [Innocenzo Pinto]
 - Substrate Transferred Crystalline AlGaAs Coatings Status [Gregg Harry]
 - Ultralow Absorption Conductive Al:ZnO Films for Charge Dissipation in LIGO Vacuum Mirrors [Aykutlu Dana].

Discussion summary

CSU 54-layer TiO2:GeO2

Normal stress SiO2 layers

Low-stress SiO2 layers

CEC/Strath/Glas 52-layer TiO2:GeO2

600C anneals

- Both TiO2:GeO2 and SiNx look promising from TN perspective.
- Absorption too high for both
 - TiO2:GeO2 ~2ppm (optimistic to reduce to 1ppm)
 - SiNx requires multimaterial (Ta2O5) design
- Biggest challenge is bubble/delamination/defects upon annealing.
- Need to identify the cause and the fixes
 - Trapped argon
 - Long anneal at lower temp in Argon-free atmosphere? Diffusion.
 - Changes to dep parameters e.g. CSU low-stress.
 - \circ Stress
 - Is this coating vs substrate stress?
 - Is this total elastic energy from multilayers?

Need to plan systematic investigations to test hypotheses for bubble origin and mitigation If this is achieved, the path to A+/AdV+ coating solution may be almost complete 16

Metrological open issues in GeNS measurements (Francesco Piergiovanni)

(1,2) • .

curvature

 $\cdot 10^{-4}$

1000

Coating Loss Angle

2.5

1.5 10^{3}

 $\frac{df}{f}$ [%]

Mixed mode rise up

Butterfly mode goes down

• df %

(1,5)

 10^{4}

Frequency (Hz)

f [Hz]

edge effects

(2,3)

Properties of SiC films (Diana Lumaca)

high coordination number - expected to have lower TLS density

Optical and mechanical characterization of ion-beam-sputtered MgF2 and AlF3 thin films (Matteo Bischi)

Performance of Optimized Ternary Coatings at Ambient and Cryo Temperatures (Innocenzo Pinto)

Noise PSD reduction factor w.r.t. reference (aLIGO-like) design

Optimized	20K (on cSi)	120K (on cSi)	290K (on Silica)
	(H′HL)⁵(H′L)⁵	(H'HL)⁴(H'L)⁵	(H'HL)⁴(H'L)⁴H'
aSi Ti::Ta2O5 SiO	0.084	0.210	0.24
	(H'HL) ⁷ (H'L) ⁹	(H'HL) ⁷ (H'L) ⁹	(HLH') ⁷ (LH') ⁸
SiNx Ti::Ta2O5 SiC	0.14	0.33	0.42

 $\begin{aligned} \kappa_{aSi} &= 10^{-4} \\ \kappa_{SiN_x} &= 10^{-5} \end{aligned}$

Noise PSD reduction factor w.r.t. *sequence-optimized QWL* ternary-design [Pierro and Pinto, LIGO-P200051]

	20K (on cSi)	120K (on cSi)	290K (on Silica)
	0.70	0.78	0.77
H'=aSi	(HL) ⁴ (H′L) ⁶	(HL)⁴(H′L) ⁶	(HL)⁴(H′L)⁵H′
	0.82	0.85	0.87
H'=SiN _X	(HL) ⁶ (H'L) ¹⁰	(HL) ⁶ (H'L) ¹⁰	(HL) ⁶ (H'L) ⁹ H'

Substrate Transferred Crystalline AlGaAs **Coatings Status** (Gregg Harry)

 $\varphi_{11} = \varphi_{12} \leq 8 \times 10^{-5}$ $\varphi_{44} < 1 \times 10^{-7}$

AlGaAs coated sample

-0.5

300mm GaAs wafer project @ Freiberger

Design Study

Freiberg, January 2020

•Phase 1: 10 and 20 cm diameter •Phase 2: 30 cm diameter/20 cm thick •By 2025, US\$20 M

Ultralow Absorption Conductive Coatings for Charge Dissipation in LIGO mirrors (Aykutlu Dana)

Total absorption including HR mirror is 0.95 ppm

- Sub-ppm absorption demonstrated with Magnetron AZO films on HR mirrors
 - 12nm thick, 6.3 TOhm/sq and 0.2 ppm absorption at 1064 nm

- Total absorption including HR mirror is 0.8 ppm
- 12nm thick, 300 TOhm/sq and <0.05 ppm absorption at 1064 nm

Total absorption including HR mirror is 0.55 ppm

Highlights from discussion

Recipe choice ~ July 2021:

- ➤ SiNx or TiO2:GeO2.
- MM design can be used for reaching A+/AdV+ goal

Challenges

- > Bubbles, defects and annealing remain a challenge.
 - Reducing stress.
 - Reducing adsorbed/implanted Ar during coating *e.g.* 'low-stress silica' from CSU?
 - Removing trapped Ar through annealing / minimising Ar aggregation through ramp time/steps
 - In 1 atm of O2, that O2 can diffuse ~3 um in 10 hours at 500 C (Fejer calculation from Williams 1965 Journal of the American Ceramic Society).

