



# Molecular Dynamics simulations to study dissipation in amorphous SiNx

<u>F. Puosia</u>, F. Fidecaro<sup>a,b</sup>, S. Capaccioli<sup>b</sup>, D. Pisignano<sup>b</sup>, D. Leporini<sup>b</sup>

<sup>a</sup> INFN Pisa

<sup>b</sup> University of Pisa

Contact: francesco.puosi@pi.infn.it

Gravitational Wave Advanced Detector Workshop 2021 F. Puosi

# Coating thermal noise







Scrutinizing the existing interatomic potentials for SiN:

- Tersoff potential: strong impacts of short cut-offs on the structure
- Marian-Gastreich 3-body potential: tendency to over-coordinate atoms
- Vashisht potential: tendency to create crystalline structures
- Garofalini potential: OK
- Marian-Gastreich 2-body potential: OK and computationally efficient

Attractive interaction<br/> $E_{N-Si} = Morse = D_e \left\{ 1 - e^{-a(r-r_0)^2} - 1 \right\}$ Screened Coulomb repulsion<br/> $E_{N-N/Si-Si} = General = \frac{A}{r}e^{-r/\rho}$  $E_{N-N} = -\frac{C_6}{r^6} \left( 1 - e^{-b_6 r} \sum_{k=0}^{6} \frac{(b_6 r)^k}{k!} \right)$ Phys. Rev. B 62 (2000) 3117

Gravitational Wave Advanced Detector Workshop 2021

# Amorphous Si<sub>3</sub>N<sub>4</sub>

ellini INF



Glasses by cooling the liquid at constant rate.





### Dynamical mechanical spectroscopy





Apply a numerical strain and compute the corresponding stress

Mechanical losses are estimated from the phase shift

$$Q^{-1} = \tan \delta = \frac{E''}{E'}$$



Previous works based on this approach have reported remarkable agreement between simulation results and experimental data on on  $Ta_2O_5$ .

(Phys. Rev. Research 1 033121 (2019), Acta Materialia 201 1 (2020))

Gravitational Wave Advanced Detector Workshop 2021

## Mechanical losses in Si<sub>3</sub>N<sub>4</sub>





Dissipation dues to Rayleigh scattering at very high frequency (observed in several amorphous materials but missing in other high coordination number glasses like SiC).

Apparent power-law behavior in the GHz range with exponent  $n \sim 0.13$ , similar to what reported for Ta<sub>2</sub>O<sub>5</sub>.

A slower quench from the liquid phase results in glasses with reduced dissipation. Yet, this cooling rate effect is not strong.

Gravitational Wave Advanced Detector Workshop 2021

# **Conclusions and perspectives**



In the simulation range of frequency, dissipation in Si3N4 exhibits a behavior similar to what observed in oxide glasses (Rayleigh scattering, power-law dependence on *f*).

For the slowest quenched glasses, losses are reduced with respect to  $Ta_2O_5$  by a factor 2.

Extrapolating to experimentally relevant frequencies (1 KHz) results in  $Q^{-1} \approx 5 \times 10^{-4}$ , which compares well with the experimental values measured in deposited Si<sub>3</sub>N<sub>4</sub>.

#### Next steps:

Microscopic characterization of the dissipation phenomenon.

Modeling of different sample preparation methods (deposition?)