

Impact of calibration uncertainties on cosmological measurements from gravitational wave sources

Yiwen (Eva) Huang, Carl-Johan Haster, Hsin-Yu Chen, Salvatore Vitale, Jeffrey Kissel, Lilli Sun, Ethan Payne

Outline LÍGO

- astrophysical parameter estimation(PE) and cosmology
 - Calibration: produce response functions that convert the photodetector output in the interferometers to the strain data from which we can extract gravitational wave signals
- Method: add artificial calibration errors, motivated by detector behavior of Hanford and Livingston in the third observing run (O3) of aLIGO-VIRGO
- **PE results** for individual events
- Plans to combine events for Hubble constant (H_0) measurements

Background **LÍGO**

- We need luminosity distances D_L for Hubble constant H_0 measurement
 - $v_H = H_0 D_L$ at small redshifts, v_H is local Hubble flow velocity
 - Biases in luminosity distance can lead to bias in Hubble constant, more significant when we combine multiple events
- We assume there are electromagnetic (EM) counterparts for binary neutron stars(BNSs) and neutron star-black holes(NSBHs) in our
 - study

Calibration uncertainties in PE LÍGO

Spline interpolation

- Fits the response function using a cubic spline polynomial
- Determines errors at each nodes of the polynomial in frequency
- physiCal[2009.10192]
 - Uses a distribution of response function curves
 - Each curve is a possible posterior sample

Simulation Set-up LIGO

response functions R_{miscal} used for miscalibration

• From calibration team: model response functions R_{model} used in parameter estimation and the

Simulation Set-up LÍGO

- From calibration team: model response functions R_{model} used in parameter estimation and the response functions R_{miscal} used for miscalibration
- Run parameter estimation with R_{model}
 - Experiment runs: add artificial calibration errors using one curve from $R_{\rm miscal}$ to mimic "bad scenarios" where we do not manage to capture all the features when modeling the response function
 - Control runs: no calibration error, to disentangle other causes for bias

the other detector


```
05/17 GWADW 2021
```


the other detector

Simulation Set-up LÍGO

- From calibration team: model response functions R_{model} used in parameter estimation and the response functions R_{miscal} used for miscalibration
- Run parameter estimation with R_{model}
 - Experiment runs: add artificial calibration errors using one curve from $R_{\rm miscal}$ to mimic "bad scenarios" where we do not manage to capture all the features when modeling the response function
 - Control runs: no calibration error, to disentangle other causes for bias
- 4 typical compact binary coalescence signals $h(t, \theta)$
 - Assume we know the sky localization (ra, dec) of potentially EM bright coalescences that include a neutron star
- Add miscalibration $S_{\text{miscal}} = (\text{noise}(t) + h(t, \theta)) \times R_{\text{miscal,i}}$
- Worst-case scenario: the same calibration error is not accounted for but present for all events

LIGO PE Results - BNS

- $m_1 = 2M_{\odot}$, non spinning
- $m_2 = 1.5 M_{\odot}$, non-spinning
- Sky localization known
- SNR 50, physiCal*, Large calibration error ("mis") vs No calibration error ("control")
 - Lines are quartiles (25%, 50% and 75%)
 - *Spline results are very similar to physiCal, thus not shown here

LIGO PE Results - BNS

Normalized by the true value

PE Results - Neutron Star Black Hole LIGO

- NSBH •
 - $m_1 = 5M_{\odot}, a_1 = 0.8, t_1 = 40^{\circ}$
 - $m_2 = 1.4 M_{\odot}$, non-spinning
 - Sky localization known
- SNR 50, PhysiCal* with unif η_{NIST} prior, Large calibration error ("mis") vs No calibration error ("control")
 - Lines are quartiles (25%, 50% and 75%)
 - *Spline results are very similar to physiCal, thus not shown here

PE Results - NSBH LIGO

NSBH

- $m_1 = 5M_{\odot}, a_1 = 0.8, t_1 = 40^{\circ}$
- $m_2 = 1.4 M_{\odot}$, non-spinning
- Sky localization known
- SNR 50, PhysiCal* with unif η_{NIST} prior, Large calibration error ("mis") vs No calibration error ("control")
 - Relative biases on distance $(\Delta D_{L,\text{med}}/D_{L,\text{true}})$ for mis (control)
 - 4.1%(0.8%) for SNR50
 - 4.6%(1.0%) for SNR35

)5/17 GWADW 202

Summary LÍGO

- Single event level
 - Systematic bias ~4-5% in luminosity distances, smaller than statistical
- If the same effect is present in multiple more significant

uncertainties for all individual events here

events, the bias on combined PE will become

- 100 BNS coalescences
 - Random luminosity distances uniformin-volume $\sim D_I^2$
 - Random inclinations and sky localizations (ra, dec) uniformly distributed
 - Assume we know the sky localization (ra, dec)
- Use time #1 for "worst" calibration error realization
 - Most significant biases in distance, etc
 - Worst-case scenario: same calibration error is not accounted for but present for all events

Preliminary results

- uncertainties at higher SNRs

