Sensor Placement Optimization for Broadband Newtonian Noise Cancellation in GW Detectors

Roselyn Jose, Dr. Rachel Kalpana Kalaimani

Department of Electrical Engineering IIT Madras

May 20, 2021

Introduction

- Newtonian Noise (NN): Displacement noise induced in the test mass, due to terrestrial gravity perturbations in vicinity of test mass.
- Since environmental density fluctuations produce a stochastic gravitational field that couples directly to test mass, Seismic Isolation Systems cannot eliminate the effects of NN.
- Newtonian noise cancellation systems consist of seismometer networks to monitor noise source and linear filters to estimate & subtract NN.
- To achieve maximal NN subtraction, the shape of the sensor array must be optimized.
- ▶ NN subtraction must be efficient across the frequency range where NN is dominant, hence Broadband sensor placement optimization problem is analysed.

Sensor Placement Optimization

Prior Work:

- Sensor array configurations were optimized for a single seismic wave frequency. Local optima was found.¹
- Optimization at two frequencies was analysed. Optimal sensor configuration formed by merging the optimal arrays of the two frequencies.²

In reality, the effect of NN is significant over $\sim (8 - 20)$ Hz.

Objective: Expand the sensor placement problem to a multi-objective optimization problem, so that the sensor positions are optimized over a broad range of frequencies.

 $^{^1\}mathrm{M.}$ Coughlin et al. "Towards a first design of a Newtonian-noise cancellation system for Advanced LIGO", 2016.

 $^{^2 {\}rm Badaracco}$ F, Harms J. "Optimization of seismometer arrays for the cancellation of Newtonian noise from seismic body waves".

Seismic Models

Assume: Rayleigh surface seismic waves propagating in homogeneous and isotropic medium.

Correlation Models³

Cross-spectral density of normal surface displacement b/w sensors: $C_{SS}^{ij}(\vec{r}_i, \vec{r}_j; \omega) = J_0\left(\frac{2\pi}{\lambda} |\vec{r}_i - \vec{r}_j|\right) + \frac{1}{\sigma^2} \delta_{ij}$

Cross-spectral density b/w normal surface displacement at sensor & NN acceleration: $C_{SN}^i(\vec{r_i};\omega) = J_1\left(\frac{2\pi}{\lambda}|\vec{r_i}|\right)\frac{x_i}{|\vec{r_i}|}$

NN variance: $C_{NN} = 0.5$

where $\vec{r} = [x; y] \in \mathbb{R}^2$ is sensor position on ground surface; $\lambda = \text{seismic wavelength}; \sigma = \text{Signal-to-Noise ratio of sensor and } N = \text{no. of sensors}$

 $^{^{3}\}mathrm{Driggers}$ et al, "Subtraction of Newtonian noise using optimized sensor arrays", Physical Review D, 2012

Noise Residual Function

- ▶ Performance of linear noise filters estimating NN is characterized by the **Noise Residual** $(R(\omega))$.
- \triangleright R represents the error between actual target value and estimated NN value for the Wiener filter.

$$R(\omega) = 1 - \frac{C_{SN}^T(\omega) \cdot (C_{SS}(\omega))^{-1} \cdot C_{SN}(\omega)}{C_{NN}(\omega)}$$

- Clearly, the Noise Residual (R) is dependent on the position of sensors (\vec{r}) and seismic wavelength (λ) .
- For a fixed number of seismometers, the optimal positioning of the sensors on the surface is obtained by minimizing \sqrt{R} .

Multi-objective Problem

To minimize R for a given frequency range of interest:

- ▶ Discretize given frequency range.
- Choose n suitable frequency points and define R for those frequencies.
- ▶ These *n* functions serve as the *n* objectives in the multi-objective optimization framework.

Multi-objective optimization problem is defined as :

minimize
$$F(\vec{r}) = \begin{bmatrix} f_1(\vec{r}) \\ f_2(\vec{r}) \\ \vdots \\ f_n(\vec{r}) \end{bmatrix}$$
subject to
$$f_i(\vec{r}) = \sqrt{R_i(\vec{r})}, \ i = 1, \dots, n$$
$$||\vec{r}||_{\infty} \le 50$$

where $F : \mathbb{R}^{2N} \to \mathbb{R}^n$

Solution Approach

- Might not be feasible to find a point that optimizes all n objective functions. Obtain Pareto-optimal solution.
- ▶ Normal Boundary Intersection (NBI) method chosen to generate Pareto-optimal surface.⁴
- NBI method finds points on the boundary of the set of attainable objective vectors by solving an optimization problem:

$$\max_{\substack{z,t \\ subject to \\ a \le z \le b } t$$

where $t \in \mathbb{R}$ $\hat{n} = \text{unit normal pointing towards origin}$ $\beta \in \mathbb{R}^n, \ \sum_{i=1}^n \beta_i = 1, \ \beta_i \ge 0$

⁴Das, Indraneel et all. "Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems", 1998

Solution Approach

- Finding global optima of NBI problem will give us a pareto-optimal point.
- To solve the above non-linear, non-convex optimization problem we have adapted the Multi-level Single Linkage (MLSL) algorithm.
- Obtain multiple points on Pareto-optimal surface by solving NBI problem for different values of β.
- ► To choose desirable pareto-optimal point, its preferable to focus on regions that present a high trade-off in the objective functions.
- Smart filter method used to reduce obtained solution set with emphasis on regions of significant trade-off.⁵

 $^{^5\}mathrm{Mattson}$ et all. "Smart Pareto filter: obtaining a minimal representation of multiobjective design space", 2004

Results

- ▶ Noise residual of the sensor configuration plotted against frequency is chosen as the performance indicator; used to select desirable solution from reduced pareto-optimal set.
- Results are verified for various cases by setting the number of sensors and objective functions.
- Desired solution compared with Single objective case, Maximum of residuals, Sum of residuals and Merged case.
- Implementation: Matlab 2019
 Desired frequency range = (8 20) Hz
 SNR (σ) = 100 for each sensor
 Rayleigh wave speed decreases from 1.5 km/s at 1 Hz to 250 m/s at 50 Hz

Results

Figure 1: Comparison of optimal solutions for N = 4 sensors & n = 4 objectives

Results

Figure 2: Comparison of optimal solutions for N = 4 sensors & n = 8 objectives

Conclusion & Future Work

- Obtained optimal seismometer array configurations for Newtonian noise cancellation over a broadband frequency range.
- Results show significant improvement from the single objective case and the error is limited only by seismometer self noise.
- More complex correlations models to be used.
- Use some advanced methods to directly obtain the desired Pareto-optimal solution.