Ranking the **Love** for the neutron star **E**quation **o**f **S**tate with **third** generation detectors

@ GWADW2021 2021, May 17-21

C. Pacilio, A.M., M. Fasano, P. Pani gr-qc: 2104.10035

Andrea Maselli

The astro-Lab

Magnifying lenses of fundamental forces

Nuclei lattice within e- gas

Nucleonic matter in β – equilibrium

- **O** *Phase transitions*
- **O** *Hyperons/mesons*

 $\begin{array}{cc} n+e^- \rightarrow \Sigma^- + \nu_e \\ \text{(udd)} & \text{(dds)} \end{array}$

O *Quark deconfinement*

From macro to micro

Microscopic properties, the *Equation of State, reflect into macroscopic stellar observables*

EoS	family	particles
ALF2	nmbt+bag	$npe\mu + Q$
APR3	nmbt	$npe\mu$
APR4	nmbt	$npe\mu$
GNH3	rmft	$npe\mu + H$
H4	rmft	$npe\mu + H$
MPA1	rmft	$npe\mu$
MS1	rmft	$npe\mu$
MS1b	rmft	$npe\mu$
SLY	rmft	$npe\mu$
SQM3	$\rm rmft+bag$	$npe\mu + H + Q$
WFF1	nmbt	$npe\mu$
WFF2	nmbt	$npe\mu$

From macro to micro

Microscopic properties, the *Equation of State, reflect into macroscopic stellar observables*

EoS	family	particles
ALF2	nmbt+bag	$npe\mu + Q$
APR3	nmbt	$npe\mu$
APR4	nmbt	$npe\mu$
GNH3	rmft	$npe\mu + H$
H4	rmft	$npe\mu + H$
MPA1	rmft	$npe\mu$
MS1	rmft	$npe\mu$
MS1b	rmft	$npe\mu$
SLY	rmft	$npe\mu$
SQM3	rmft+bag	$npe\mu + H + Q$
WFF1	nmbt	$npe\mu$
WFF2	nmbt	$npe\mu$

The Love number

Tidal interactions leave the footprint of the NS structure on the GW signal

Hinderer, The Astrop. J. 677, 2008; Binnington & Poisson Phys. Rev. D 80, 2009 Damour & Nagar, Phys. Rev. D 80, 2009

• Deformation properties encoded within the Love numbers

• λ depends on the EoS only for a given compactness $M_{\rm NS}/R_{\rm NS}$

• λ enters within the gravitational waveform

Tidal effects add linearly to the GW phase

 $h(f) = \mathcal{A}e^{i[\psi_{\mathrm{PP}}(f) + \psi_{\mathrm{T}}(f)]}$

$$\psi_{\rm T} \propto \frac{1}{26} \left[\left(1 + 12 \frac{m_2}{m_1} \right) \lambda_1 + \left(1 + 12 \frac{m_1}{m_2} \right) \lambda_2 \right] \frac{(m\pi f)^{10/3}}{c^{10}} + \frac{\dots}{c^{12}}$$

Tidal effects add linearly to the GW phase

 $h(f) = \mathcal{A}e^{i[\psi_{\mathrm{PP}}(f) + \psi_{\mathrm{T}}(f)]}$

$$\psi_{\rm T} \propto \frac{1}{26} \left[\left(1 + 12 \frac{m_2}{m_1} \right) \lambda_1 + \left(1 + 12 \frac{m_1}{m_2} \right) \lambda_2 \right] \frac{(m\pi f)^{10/3}}{c^{10}} + \frac{\dots}{c^{12}}$$

$$\uparrow$$
5 PN: small term!

• *Relevant at high frequencies*

Tidal effects add linearly to the GW phase

 $h(f) = \mathcal{A}e^{i[\psi_{\rm PP}(f) + \psi_{\rm T}(f)]}$

• Relevant at high frequencies

Tidal effects add linearly to the GW phase

 $h(f) = \mathcal{A}e^{i[\psi_{\rm PP}(f) + \psi_{\rm T}(f)]}$

• Relevant at high frequencies

The observables: GWs

Measurements of the Love Numbers from GW170817

LVC, Phys. Rev. Lett. 121, 2018 *LVC, Phys. Rev. X* 9, 011001, 2019

Ranking the EoS

Hierarchical Bayesian test which rank different EoS given GW binary NS observation(s)

O Degree of belief that 2 NS of a binary obey a particular EoS

• Relative odds of two EoS given the data

$$\mathcal{B}_{2}^{1} = \frac{\mathcal{Z}(\mathcal{D}|\text{EoS}_{1})}{\mathcal{Z}(\mathcal{D}|\text{EoS}_{2})} \qquad n \text{ events} \qquad \mathcal{B}_{2}^{1} = \prod_{k=1}^{n} \frac{\mathcal{Z}(\mathcal{D}_{k}|\text{EoS}_{1})}{\mathcal{Z}(\mathcal{D}_{k}|\text{EoS}_{2})}$$

 $\begin{array}{ll} \bullet & \text{Constraint} & \log_{10} \mathcal{B}_2^1 < -2 & \text{EoS 1 decisively disfavored} \\ & -2 \leq \log_{10} \mathcal{B}_2^1 \leq -1 & \text{EoS 1 strongly disfavored} \end{array} \end{array}$

The road to the EoS

Bayesian ranking of 12 realistic EoS based on microscopic calculations

O Consistent with max mass constraint of J0740+6620

EoS	family	particles
ALF2	nmbt+bag	$npe\mu + Q$
APR3	nmbt	$npe\mu$
APR4	nmbt	$npe\mu$
GNH3	rmft	$npe\mu + H$
H4	rmft	$npe\mu + H$
MPA1	rmft	$npe\mu$
MS1	rmft	$npe\mu$
MS1b	rmft	$npe\mu$
SLY	rmft	$npe\mu$
SQM3	$\rm rmft+bag$	$npe\mu + H + Q$
WFF1	nmbt	$npe\mu$
WFF2	nmbt	$npe\mu$

GW170817

Bayes factor normalised to the EoS with the largest evidence (WFF2)

- The evidence against other EoS is weak beside GNH3 and H4
- Decisive evidence against MS1 and MS1b
 - Stiffest EoS of the catalogue

Doing better with **more** *help?*

GW170817

Bayes factor normalised to the EoS with the largest evidence (WFF2)

- The evidence against other EoS is weak beside GNH3 and H4
- Decisive evidence against MS1 and MS1b
 - Stiffest EoS of the catalogue

Doing better with **more** *help?*

Stacking at design

Bayes factor as a function of # of events detected by HLV at design [20 observations within $60 \le d_L/Mpc \le 210$]

• The case of the **stiff** EoS: ALF2

• EoS with stiffness different from ALF2 are immediately ruled out

• After ~ 10 events EoS with stiffness similar to ALF2 are ruled out

Stacking at design

• The case of the **soft** EoS: APR4

- Challenging to discriminate among EoS with similar stiffness
 - Even multiple detections are not enough to discriminate models built with different methods and particle content

The message from ET

• Let's see again the case of the **soft** EoS: APR4

- Just 2 EoS in the dataset survive to the selection
- Combining > 3 events rules out almost EoS other than APR4

ET can distinguish **stiffness** and **micro-physics**

The message from ET

• Let's see again the case of the **soft** EoS: APR4

- Just 2 EoS in the dataset survive to the selection
- Combining > 3 events rules out almost EoS other than APR4

ET can distinguish **stiffness** and **micro-physics**

EoS	family	particles
ALF2	nmbt+bag	$npe\mu + Q$
APR3	nmbt	$npe\mu$
APR4	nmbt	$npe\mu$
GNH3	rmft	$npe\mu + H$

different N-N interactions