Lockloss Prediction

Rutuja Gurav, UC Riverside

Use recorded data streams to build a model that can predict a lockloss ahead of time.

Challenges:

- 1. Extract relevant features from a set of channels.
- 2. Choose the appropriate **SEGMENT LENGTH** and **SEGMENT BUFFER** before event for each channel.

Diagnostics Stage

Use the trained model to find lockloss witnesses

Challenges:

- 1. **Down-select** a set of channels having features strongly correlated with a lockloss event.
- 2. Follow-up on corresponding channels.

Intervention stage

Traditional route:

Transition to earthquake mode? (takes 60-260 seconds) **ML route:**

Reconstruct motion of mirrors for lock acquisition.

Challenges:

Traditional route:

How close to the actual lockloss event is an early warning effective?

ML route:

Status of RNN-based TM motion reconstruction unknow.

Channels: 23 Length and Angular DoF channels **Features:**

12 summary statistics*23 channels = 276 features {energy, difference, complexity, mean, standard deviation, variance, kurtosis, skewness, sample entropy, approximate entropy, absolute sum of changes, mean absolute change}

Hanford O3a : 169 (lockloss) + 364 (locked) samples

Lockloss tags	Count
SEISMIC	56
BOARD_SAT	10
WINDY	41
ADS_EXCURSION	32
BRS_GLITCH	2

Results:

160 samples predicted as outliers

SEISMIC WINDY ADS_EXCURSION BOARD_SAT UNKNOWN = 21 LOCKED = 78

None of the BRS_GLITCH related locklosses predicted as outliers using **100 second segments 300 seconds away** from locklosses using Length and Angular DoF channels (mean, s-trend).

Use recorded data streams to build a model that can predict a lockloss ahead of time.

Challenges:

- 1. Extract relevant features from a set of channels.
- 2. Choose the appropriate **SEGMENT LENGTH** and **SEGMENT BUFFER** before event for each channel.

Diagnostics Stage

Use the trained model to find lockloss witnesses

Challenges:

- **1. Down-select** a set of channels having features strongly correlated with a lockloss event.
- 2. Follow-up on corresponding channels.

Intervention stage

Traditional route:

Transition to earthquake mode? (takes 60-260 seconds) **ML route:**

Reconstruct motion of mirrors for lock acquisition.

Challenges:

Traditional route:

How close to the actual lockloss event is an early warning effective?

ML route:

Status of RNN-based TM motion reconstruction unknow.

Determine important channels using a surrogate model

For Surrogate modelling –

Task:Binary ClassificationClassifier:Random ForestTargets:Isolation Forest predictions

('H1:ASC-PRC2_P_IN1_DQ.mean,s-trend', 'sample_entropy') ('H1:ASC-INP1_Y_IN1_DQ.mean,s-trend', 'mean_absolute_change') ('H1:ASC-INP1_Y_IN1_DQ.mean,s-trend', 'sample_entropy')

Bottom 3 features

not outlie

Use recorded data streams to build a model that can predict a lockloss ahead of time.

Challenges:

- 1. Extract relevant features from a set of channels.
- 2. Choose the appropriate **SEGMENT LENGTH** and **SEGMENT BUFFER** before event for each channel.

Diagnostics Stage

Use the trained model to find lockloss witnesses

Challenges:

- 1. **Down-select** a set of channels having features strongly correlated with a lockloss event.
- 2. Follow-up on corresponding channels.

Intervention stage

Traditional route:

Transition to earthquake mode? (takes 60-260 seconds) **ML route:** Reconstruct motion of mirrors for lock acquisition.

Challenges:

Traditional route:

How close to the actual lockloss event is an early warning effective?

ML route:

Status of RNN-based TM motion reconstruction unknow.

Determine important channels using Shapley values

Low values of this channel's absolute sum of changes has +ve impact on model prediction

High values of this channel'sskewness has +ve impact on model prediction

Use recorded data streams to build a model that can predict a lockloss ahead of time.

Challenges:

- 1. Extract relevant features from a set of channels.
- 2. Choose the appropriate SEGMENT LENGTH and **SEGMENT BUFFER** before event for each channel.

Diagnostics Stage

Use the trained model to find lockloss witnesses

Challenges:

- 1. Down-select a set of channels having features strongly correlated with a lockloss event.
- 2. Follow-up on corresponding channels.

Intervention stage

Traditional route:

Transition to earthquake mode? (takes 60-260 seconds)

ML route:

Reconstruct motion of mirrors for lock acquisition.

Challenges:

Traditional route:

How close to the actual lockloss event is an early warning effective?

ML route:

Status of RNN-based TM motion reconstruction unknow.

Common important channels for Isolation Forest:

Shapley values

H1:ASC-PRC2 Y IN1 DQ.mean,s-trend H1:ASC-INP1 P IN1 DQ.mean,s-trend H1:ASC-DHARD P IN1 DQ.mean,s-trend H1:ASC-SRC2 Y IN1 DQ.mean,s-trend H1:ASC-MICH Y IN1 DQ.mean,s-trend H1:ASC-PRC1 P IN1 DQ.mean,s-trend

Surrogate Modelling

-hannels pending) Common important channels between LOF and Bolation Forest (via Surrogate Modelling): H1:ASC-MICH_Y_IN1_DQ.mean,s-trend

 \cap

H1:ASC-MICH Y IN1 DQ.mean,s-trend H1:ASC-PRC1 P IN1 DQ.mean,s-trend H1:ASC-SRC2 P IN1 DQ.mean,s-trend H1:ASC-SRC2 Y IN1 DQ.mean,s-trend

Preliminary Remarks

- Channels + Features + Data Segments used are not enough to predict ALL types of locklosses that occurred at Hanford in O3a
 - 1. Summary statistics of a data segment of the mean, s-trend of a channel may wash out finer resolution features.
 - 2. 23 length and angular degrees of freedom channels used may not witness all locklosses.
 - 3. SEGMENT_LENGTH and SEGMENT_BUFFER used may miss predictive features outside that window.

Future Directions

- The search across {SEGMENT LENGTH, SEGMENT BUFFER} combinations is expensive
 - Matrix Completion to the rescue?
- Appropriate pre-processing
 - Corner frequencies for each channel?
- Better features
 - Hand-crafted vs DNN for feature extraction
 - **Continuous Wavelet Transform Scalogram** to capture 'bursty' and slow information from each segment of each channel.
- Silver Bullet or Ensemble?

Expand channels list BUT... Silver Bullet model using all channels? OR Smaller models ensembled together?