Status of R&D activity on IBS TiO2:GeO2 coatings

GWADW 2021 – May 17th 2021

Gabriele Vajente¹, Le Yang², Aaron Davenport³, Mariana Fazio³, Alena Ananyeva¹, Liyuan Zhang¹, Garilynn Billingsley¹, Kiran Prasai⁴, Ashot Markosyan⁴, Riccardo Bassiri⁴, Martin M. Fejer⁴, Martin Chicoine⁵, François Schiettekatte⁵, and Carmen S. Menoni^{2, 3}

¹California Institute of Technology, LIGO Laboratory MC 100-36,
¹200 E. California Blvd. Pasadena (CA) USA
²Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
³Department of Electrical and Computer Engineering,
Colorado State University, Fort Collins, CO 80523, USA
⁴Edward L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA
⁵Department of Physics, University of Montreal, Quebec H3T 1J4, Canada

LIGO-G2101085-v1

Brownian noise in A+

NSF

Aplus design curve - NSNS (1.4/1.4 $M_{\odot})$ 325 Mpc and BHBH (30/30 $M_{\odot})$ 2563 Mpc

LIGO

From IS white paper T2000407-v3 $S_{A+}^{1/2}(100 \text{ Hz}) = 0.65 \times 10^{-20} \text{ mHz}^{-1/2}$

- Improve coating Brownian noise by about a factor 2
- By a combination of loss angle(s), Young's modulus and refractive index

$$S_{x}(f) = \frac{2k_{B}T}{\pi^{2}f} \frac{d}{w^{2}} \left\{ \left[\frac{1}{3} \left\langle \frac{(1-2\sigma)}{(1-\sigma)^{2}} Y \phi_{K} \right\rangle + \frac{2}{3} \left\langle \frac{1-\sigma+\sigma^{2}}{(1-\sigma)(1-\sigma^{2})} Y \phi_{\mu} \right\rangle \right] \frac{(1+\sigma_{s})^{2}(1-2\sigma_{s})^{2}}{Y_{s}^{2}} + \frac{2}{3} \left\langle \frac{(1-2\sigma)(1+\sigma)}{(1-\sigma)^{2}} (\phi_{K} - \phi_{\mu}) \right\rangle \frac{(1+\sigma_{s})(1-2\sigma_{s})}{Y_{s}} + \left[\frac{1}{3} \left\langle \frac{(1+\sigma)^{2}(1-2\sigma)}{(1-\sigma)^{2}} \frac{1}{Y} \phi_{K} \right\rangle + \frac{2}{3} \left\langle \frac{(1+\sigma)(1-2\sigma)^{2}}{(1-\sigma)^{2}} \frac{1}{Y} \phi_{\mu} \right\rangle \right] \right\}$$
(3.1.7)

M. M. Fejer, Effective Medium Description of Multilayer Coatings, https://dcc.ligo.org/LIGO-T2100186/public

LIGO

First set of deposition (with the LANS system) described in P2100075

LIGO

Titania-doped Germania films

First set of deposition (with the LANS system) described in P2100075

Film deposited with Spector

- Silica and Titania-Germania single layers (deposition details in T2100183)
- Multi-layer stacks of 10 and 40 layers total
- It is not straightforward to compare Young's modulus and loss angle of single layers and stacks
- In a (very) simple approximation

LIGO

$$Y_c = \frac{\sum_i d_i Y_i}{\sum_i d_i} \ \phi_c = \frac{\sum_i \phi_i d_i Y_i}{\sum_i Y_i d_i}$$

• No evidence of excess loss in the stack

TEM image of SiO₂ / Ti:GeO₂ stack

40 LAYERS Absorption loss @ 1 μm

Coating	Abs. (ppm) @ 1 μm
As dep	46.4
600°C for 10 h	3.4

Delamination issues

- Annealing the multilayers creates bubbles / delamination
- Highly dependent on the stress in the deposited film
- High stress tracked down to the silica layers
 - Bubbles form also in tantala / silica stacks
 - Bubbles reduced with deposition of lower stress silica
- Two step annealing (300°C then 600°C) reduces bubbles in 40 layers
- Some bubbles still present on 52 layers after 300°C then 500°C annealing (No bubbles after 300°C)
- Work in progress

LIGO

Low-stress SiO2 layers

As deposited

300 C straight to 600 C anneal

Separate 300 C and 500 C anneal

Brownian noise prediction for A+

• Mirror design (physical thickness in nm)

LIGO

- ITM = [SiO2 367, TiGeO2 106] [SiO2 228, TiGeO2 106]*10: T = 1.4%
- ETM = [SiO2 367, TiGeO2 123] [SiO2 208, TiGeO2 123]*25: T = 5 ppm
- Measured bulk and shear loss angles (preliminary) for silica and 44%-titania-germania

Summary

LIGO

- Titania-Germania films are a very promising candidate for A+ coatings
- Annealing at 600°C for 100+ hours gives the best loss angle without crystallization
- Issues with delamination when annealing at 500°C and above, related to high stress in silica. Work in progress
- Optical absorption of a 40 layer stack 3.4 ppm, still room for improvements
- Exploration of different titania concentration on-going with film deposited at Cutting Edge Coatings, with University of Strathclyde and University of Montreal. Annealing and analysis in progress