

lisa

Wavefront sensors for 3rd generation GW detectors

GWADW, 17-21 May 2021

Daniela Pascucci

on behalf of the LISA Quadrant Photo-Receiver Working Group and the Virgo Phase Camera Group

Outline

- Introduction to wavefront sensors
- LISA Quadrant Photodiode: development and characterisation
- Virgo Phase Camera: status and challenges
- Future of wavefront sensors

Wavefront sensors

hef

GWADW, 17-21 May 2021, Wavefront sensors for 3rd Generation GW detectors, Daniela Pascucci

Wavefront sensors are optical devices able to measure the features of the beam wavefront (shape, aberration, etc.) in order to verify deviations from an ideal reference beam.

LISA Quadrant Photodiode

Requirements

Netherlands Institute for Space Researc

lisa

SRON

hef

Low-noise large-area PD

Reduce doping: how low?

SRON Nik hef therlands Institute for Space Researc

First run ready

Characterisation tests in progress

- **Capacitance/doping**
- **Photocurrent**
- **Mandwidth**
- **Surface uniformity**
- **Quantum efficiency**

Capacitance/doping

letherlands Institute for Space Research

hef

Nik]

Bandwidth and photocurrent

lisa

To do:

- Minimise asymmetries between channels

11

Quantum efficiency and surface uniformity

Nik hef

lisa

Outlook

Experience in InGaAs/InP photodetectors useful for future GW detectors.

lisa

Virgo Phase Camera

Why a Phase Camera?

(IO)/VIRGD

Nik hef

Working principle

- Demodulation is performed digitally by sampling the AC part of the current with a fast ADC.
- After demodulation we have amplitude and phase for the sidebands.

Power and phase images

Nikhef

IIOJIVIRGD

Thermal effects and HOMs

Nik hef

GWADW, 17-21 May 2021, Wavefront sensors for 3rd Generation GW detectors, Daniela Pascucci

The input power to the interferometer is increased from about 18 W to about 26 W

Outlook

Understand the data: what do the phase images represent?

Producing 3 phase cameras for LIGO (in collaboration with the University of Birmingham)

What's next

Quantum dots

Nanometer sized semiconductors in which single electrons and holes can be trapped and manipulated.

- Tuneable band-gap (depends on the size of the nano-crystal).
- High control of light absorbance and emission frequencies.
- High photo-stability.

Thank you!

