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Outline
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• Introduction to wavefront sensors


•LISA Quadrant Photodiode: development and characterisation


•Virgo Phase Camera: status and challenges


•Future of wavefront sensors
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Wavefront sensors
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Wavefront sensors are optical devices able to measure the features of the beam wavefront 
(shape, aberration, etc.) in order to verify deviations from an ideal reference beam.

Quadrant photodiodes provide the position of the beam

used for the alignment aid commissioning



LISA Quadrant Photodiode
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Requirements
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•Diameter: 2.0 mm (goal)

Large is better to simplify alignment, 

but it would imply large capacitance


•Gaps: 10 - 20 

Large gap will waste light 

and increase TTL coupling noise


•Current noise: < 2 pA/ 

It requires low capacitance


•Bandwidth: 2 … 25 (30) MHz

It will depend from the Doppler shifts 

from the relative motion of the spacecraft


•Responsivity: > 0.7 A/W (@1064 nm) 

To avoid wasting photons 

which would reduce SN ratio 

➡ InGaAs


•Radiation hardness, mechanical and thermal stability, lifetime …

μm

Hz

credits: G.F. Barranco, Ph.D. Thesis (2017)

1064 nm



GWADW, 17-21 May 2021, Wavefront sensors for 3rd Generation GW detectors, Daniela Pascucci

Low-noise large-area PD
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Absolute permittivity 

of the material

Detector 

area

Width of 

depletion region

Capacitance

low noise 
requires 


low capacitance

Low 
capacitance 

Reduce ϵ change material

Increase d requires higher voltage to deplete 
(on spacecrafts we have max. 24 V)

all semiconductors have close values of  (the 
change would be insignificant)

ϵ

Reduce A large area needed for alignment issue

reduce doping

C =
ϵ A
d

6
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Reduce doping: how low?
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V =
q N d2

2 ϵ
Absolute permittivity 


of the material

Doping

Elementary charge

Full depletion  
voltage

Our target value is 

N ≤ 1x1014 cm-3

Width of 

depletion 


region

Sensitivity limit of typical doping 
concentration measurements techniques


~ 1x1014 cm-3

Number of InGaAs atoms per volume

~ 4x1022 cm-3
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First run ready
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4 layers structures  
15 configurations  

(including single element photodiodes)
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Capacitance/doping 

Photocurrent 

Bandwidth 

Surface uniformity 

Quantum efficiency

Characterisation tests in progress
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Capacitance/doping
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Full

depletion

C =
q N ϵ A2

2(V + Vbi)
+ Co

Absolute permittivity 

of the material

Detector area

Built-in voltage

Capacitance

DopingElementary 
charge

Applied voltage

Additional 
capacitance

CVU

Switch 
matrix

To do:


•Optimise the fit


•Error analysis


•Determine specific 
capacitance contributions
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Bandwidth and photocurrent
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To do:


•Minimise asymmetries between channels


•Optimise the amplifier to reduce electronic noise


•Measure more diodes (from different vendors)
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Quantum efficiency and surface uniformity
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Focusing lens

on manual 


translation stage

in z direction

Board on motorised 

translation stages 


in x and y

To do:


•Monitor power fluctuations


•Measure QPDs


•Try to evaluate the gap size


•Measure cross-talk

PD to monitor 
power fluctuations

Source Measurement 
Unit (SMU) 


to apply bias voltage 
and read back current

Switch Matrix (SM) and 
Digital Multi-Meter (DMM) 
to automise and read the 

measurements of the 
single segments

DMMSMSMU

First measurements done to test the set-up

Used a 4mm SEPD and a ~300 µm beam
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Outlook
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Housing 
design 


in progress

Aiming to build all 
72 QPDs 

for LISA 


(a 5-10 M€ project)

Experience in 


InGaAs/InP 

photodetectors useful for 

future GW detectors.

Images credit: Kenny Lam 

Promising first results.


More tests and analysis needed.
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Virgo Phase Camera
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Why a Phase Camera?
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aid 
commissioning

cavity mirrors

beamsplitter

power 
recycling 

mirror
laser

photodiode

Advanced Virgo has a marginally 
stable Power Recycling Cavity

Higher Order Modes (HOM) can resonate 
and complicate the cavity control

Phase cameras provide phase


and amplitude images

Laguerre-Gaussian modes

Phase 

Camera

Phase 

Cameraprovide input to correct 

thermal effects
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Optical set-up
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• Upper and lower sidebands (USB/LSB) are at (slightly) 
different optical frequencies


• Access each sideband separately by mixing it with a 80 MHz 
frequency shifted beam


• Beat signal with fH, and fH +/- fs 

Test beam 
(carrier + sidebands)

Reference beam 
(Frequency shifted by fH)

Pin-hole 
photo diode

Scanner

BS

phase 
modulation

 fH

fs

beam  
telescope

beam with beat notes  
(fH, fH +/- fs) 

EOM

AOM FPGA 
digital  

demodulation
ADC
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Working principle

17

EIFO = A ( x ) ei(ωc + ωs)t + iϕs( x ) Eref = B ( x ) ei(ωc + ωh)t + iϕh( x )

Resulting current after the diode (quantities that are scanned over denoted by  ):x

Idiode = A
2

+ B ( x )
2

+ A B ( x ) cos ((ωs − ωh) t + ϕs ( x ) − ϕh)

Ecombined =
1

2
EIFO +

i

2
Eref

• Demodulation is performed 
digitally by sampling the AC part 
of the current with a fast ADC.


• After demodulation we have 
amplitude and phase for the 
sidebands.

DC signal

amplitude phase }}
AC signal
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Power and phase images
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splitter

power 
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Thermal effects and HOMs
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The input power to the interferometer is increased from about 18 W to about 26 W 

(and will be further increased).


This makes mirrors thermally expand and changes the mode matching.


Thermal effects are a source of HOMs.
beamsplitter

power 
recycling 

mirror

Phase 

Camera

Phase 

Camera

cavity mirrors

credits: L. van der Schaaf, Ph.D. Thesis (2020)
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Outlook
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Producing 3 phase cameras for LIGO 
(in collaboration with the University of Birmingham)

Understand the data: 

 what do the phase 
images represent?

Use the data:


provide feedback to correct the thermal effects
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What’s next
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Quantum dots 
Nanometer sized semiconductors in which single 
electrons and holes can be trapped and 
manipulated.

•Tuneable band-gap (depends on the size of the 
nano-crystal).

•High control of light absorbance and emission 
frequencies.

•High photo-stability.

Extended InGaAs 
InGaAs photodiode with a longer cutoff wavelength, 
obtained increasing the percentage of InAs.

Future GW detectors will use different laser wavelengths (1.55 µm and 2 µm)

Might require the use of new photodetectors 

Standard InGaAs Extended InGaAs 
(max.)

InAs 53% 82%

Cutoff wavelength 1.7µm 2.6µm
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Thank you!
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