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Phase cameras
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* Frequency selective wavefront sensors
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Kazuhiro Agatsuma et al., "High-performance phase camera as a frequency selective
laser wavefront sensor for gravitational wave detectors," (2019)
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Optical lock-in phase camera

e Optical demodulation
achieved using QWP, EOM &
PBS
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Huy Tuong Cao, Daniel D. Brown, Peter J. Veitch, and David J. Ottaway.
"Optical lock-in camera for gravitational wave detectors." Opt. Express 28, 14405-14413 (2020)

* Each camera pixel acts like
demodulated photodiode
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Phase camera use cases

Sense higher order effects: * Assisting with comissioning
* Pointabsorbers * Feed back into models to infer details
e Thermal deformations about interferometer state

e HOMs in control signals

0 amplitude t=1256646636

Brooks, Aidan F., et al. "Point absorbers in
Advanced LIGO." (2021)
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https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=52927
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Mode decomposition
* Represent field as a sum of
orthogonal modes

 Mode content useful for error signals,
feeding information to models

e Compression algorithm for high

resolution images, for effecient Ho
transfering & storing data .
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Overlap integral decomposition

Slow and cumbersome for real time processing:

e Compute overlap integral with each HG mode:

Crim ://U(a:, y, 20)HG  (z,y,q) dx dy

e Need to calculate beam centre to avoid translation

HG;o

errors in mode coefficients

e Calculating coefficients of sideband field only requires

even more processing steps

~
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CNN decomposition
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Phase Camera Image Processing Convolutional Neural Network

» Very fast when delployed on GPUs/FPGAs

e Calculate beam centre, unwrap carrier field & evaluate
mode coefficients in a single step

* Network learns sets of filters to decompose the image
into a set of features, which are then translated into
mode coefficients

Schiworski, Mitchell G., Daniel D. Brown, and David J. Ottaway.
"Modal decomposition of complex optical fields using convolutional neural networks." arXiv preprint arXiv:2104.08458 (2021).
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CNN decomposition - training data

* Need a large dataset of phase camera images
and mode coefficients to train network

* Generate simulated phase camera images of
beams with randomised mode content

 Random offset in beam position

* Fixed Gaussian reference and g

*Colour hue represents beam phase
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CNN decomposition - network architecture

Input Dense Dense
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* | & Q phase camera images as input

* Pre-trained VGG16 network
* Dense layers scale with order of decomposition

* Normalise mode coefficients before output
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CNN decomposition - training

Network trained through iterative
process

Training images are passed to the
network & parameters are optimised so
the predicted mode coefficients match
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CNN decomposition - curriculum learning

Traditional learning approach ineffective
at higher decomposition orders

Train network on individual modes first

Creates better initial conditions for
optimization landscape

OzGrowv

ARC Centre of Excellence for Gravitational Wave Discovery

MSE Loss

Images of single modes

1072

1073 o

1074 o

— single modes only
= full dataset




CNN decomposition - results
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* Network less susceptible to beam centering and mode content
[ J

Integral method more accurate when beam has spherically
symmetric intensity distribution
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CNN decomposition - results

Network benefits from higher resolution images

Average network error per mode increases with

Number of modes, k
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Future work

* Experiment at Adelaide digitally
processed phase camera images for
alignment & mode-matching error
signals

Convolutional Neural Network

* Instead use CNN to analyse real-time
phase camera images —

* Convert high resolution images into Laser ol e Gous e
useable error signals m— Mot oo
. Interferometric

System .
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Summary
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Phase Camera Image Processing Convolutional Neural Network
* Phase cameras are useful tools for diagnosing & controling gravitational wave
interferometers, but it can be slow/difficult to interpret their images
* CNNs can provide processing of phase camera images into Hermite-Gaussian modes at
real-time speeds
 Hope to process CNN calculated mode coefficients into error signals & use as inputs to
feed into models
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