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Phase cameras
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• Frequency selective wavefront sensors

• Demodulate at multiple transverse positions to recreate 
amplitude & phase profile of beat field

Keisuke Goda et al. , "Frequency-resolving 

spatiotemporal wave-front sensor," (2004)

Kazuhiro Agatsuma et al., "High-performance phase camera as a frequency selective 

laser wavefront sensor for gravitational wave detectors," (2019)



Optical lock-in phase camera
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• Optical demodulation 
achieved using QWP, EOM & 
PBS

• Each camera pixel acts like 
demodulated photodiode

Huy Tuong Cao, Daniel D. Brown, Peter J. Veitch, and David J. Ottaway.

"Optical lock-in camera for gravitational wave detectors." Opt. Express 28, 14405-14413 (2020)



Phase camera use cases
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Sense higher order effects:

• Point absorbers

• Thermal deformations

• HOMs in control signals

• Assisting with comissioning

• Feed back into models to infer details 
about interferometer state

Brooks, Aidan F., et al. "Point absorbers in 

Advanced LIGO." (2021)
https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=52927



Mode decomposition
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• Represent field as a sum of 
orthogonal modes

• Mode content useful for error signals, 
feeding information to models

• Compression algorithm for high 
resolution images, for effecient 
transfering & storing data



Overlap integral decomposition
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Slow and cumbersome for real time processing:

• Compute overlap integral with each HG mode:

• Need to calculate beam centre to avoid translation 

errors in mode coefficients

• Calculating coefficients of sideband field only requires 

even more processing steps 



CNN decomposition

7

Schiworski, Mitchell G., Daniel D. Brown, and David J. Ottaway. 

"Modal decomposition of complex optical fields using convolutional neural networks." arXiv preprint arXiv:2104.08458 (2021).

• Very fast when delployed on GPUs/FPGAs

• Calculate beam centre, unwrap carrier field & evaluate 
mode coefficients in a single step

• Network learns sets of filters to decompose the image 
into a set of features, which are then translated into 
mode coefficients



CNN decomposition - training data
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• Need a large dataset of phase camera images 
and mode coefficients to train network

• Generate simulated phase camera images of 
beams with randomised mode content

• Random offset in beam position

• Fixed Gaussian reference and q

*Colour hue represents beam phase



CNN decomposition - network architecture
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• I & Q phase camera images as input

• Pre-trained VGG16 network

• Dense layers scale with order of decomposition

• Normalise mode coefficients before output



CNN decomposition - training
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• Network trained through iterative 
process

• Training images are passed to the 
network & parameters are optimised so 
the predicted mode coefficients match



CNN decomposition - curriculum learning
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• Traditional learning approach ineffective 
at higher decomposition orders

• Train network on individual modes first

• Creates better initial conditions for 
optimization landscape

Images of single modes



CNN decomposition - results
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• Network less susceptible to beam centering and mode content

• Integral method more accurate when beam has spherically 
symmetric intensity distribution



CNN decomposition - results
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• Network benefits from higher resolution images

• Average network error per mode increases with 
the decomposition order

• Network evalutation time approx. independant of 
decomposition order, number of overlap integrals 
required increases quadratically

• May be able to improve accuracy by exploring 
more network architectures



Future work
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• Experiment at Adelaide digitally 
processed phase camera images for 
alignment & mode-matching error 
signals

• Instead use CNN to analyse real-time 
phase camera images

• Convert high resolution images into 
useable error signals



Summary
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• Phase cameras are useful tools for diagnosing & controling gravitational wave 

interferometers, but it can be slow/difficult to interpret their images

• CNNs can provide processing of phase camera images into Hermite-Gaussian modes at 

real-time speeds

• Hope to process CNN calculated mode coefficients into error signals & use as inputs to 

feed into models


