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• How did the elements come into existence?


• What makes stars explode as supernovae, novae, or X-ray bursts?


• What is the nature of neutron stars?


• What can neutrinos tell us about stars? 

Background

From: National Research Council of the National Academies

“Nuclear Physics — Exploring the Heart of Matter” (2012)

Open problems in nuclear astrophysics

GW observations of NS mergers are key to answer these questions!



NS merger: our roadmap



Binary NS inspiral



GWs from BNS mergers

From Radice, Bernuzzi, Perego, Ann.Rev.Nucl.Part.Sci. 70:95 (2020)

• Inspiral: 0 - ~1.5 kHz


• Postmerger: 1.5 kHz - 4 kHz


• Most of the SNR is in the inspiral


• Analytical techniques valid at low 
frequencies


• Last ~10-20 orbits, merger, and 
postmerger: need NR



Tidally interacting NSs
• The impact of tides


1. The potential is modified and 
becomes more attractive:





2. The tidal bulge contribute to the 
GW emission:





• The inspiral is accelerated compared to 
that of two BHs with the same 
parameters as the BNS


• Read off tidal information from the 
dephasing of the wave
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GW parameter estimation

Adapted from Damour & Nagar 2012
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GW170817

From Godzieba+ Phys. Rev. D 103, 063036 (2021)

See also: LVC 2017, De+ 2018, LVC 2018, Radice+2018, Capano+ 2019, Gamba+ 2020, …

• Robust upper limits 


• Very stiff EOS are ruled out at 
high confidence


• Lower limits: dependency on 
details of the analysis, 
waveform model, etc.


• Probing the EOS on the soft 
side more challenging: we 
need multimessenger 
observations

Λ̃ < 800
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From: LVC 2019, ApJL 892:L3 (2020)

Measuring  for massive NSs would provide very strong constrain on the EOS 

(e.g., probe phase transitions), but challenging measure
Λ

Λ ∼ M−6



Much work remains to be done in modeling, data analysis, and 
experimental techniques


• Waveform systematics will dominate for SNRs .


• 3G is needed to measure .


• How do we combine GW and EM data from multiple events?

≳ 50

Λ(M)

Preparing for the next discovery



The CoRe catalog

Dietrich, DR, Bernuzzi+ CQG 35:LT01 (2018)www.computational-relativity.org

• Largest catalog of NR GW 
waveforms for BNS systems


• Two independent codes: cross 
validation


• Used for LVC TidalEOB, NRTides, 
waveform models calibration and 
validation


• EM light curves and r-process 
nucleosynthesis available


• Open source: simulation codes, 
initial data, EOS tables, parameter 
files, all available



Binary NS merger



Prompt BH formation: q ~ 1
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of the code). Our study considers 12 microphysical, fully
temperature-dependent EoSs with maximum masses in
the range of 1.95 to 2:79M!, which is compatible with
the observation of a 1:97M! " 0:04M! pulsar [36] (see
Table I). With the exception of the IUF EoS, these EoSs
are also consistent with the detection of a NSwith a mass of
2:01M! " 0:04M! [49]. The radii Rmax of the maximum-
mass configurations vary between 10.32 and 13.43 km (see
also Ref. [23] for the mass-radius relations of most EoSs
considered here). The EoSs are chosen without any selec-
tion procedure and cover approximately the full range of
high-density models regarding their stellar properties. As
initial conditions, we set up cold NSs in neutrinoless beta
equilibrium on a quasiequilibrium orbit a few revolutions
before merging. We assume irrotational stars since tidal
locking is unlikely [50,51], and the orbital period is short
compared to possible stellar rotation. Unless stated other-
wise, we use a resolution of about 340 000 SPH particles.

For each EoS, we determine Mthres by performing simu-
lations of binaries with different values of Mtot, which is
defined as the binary’s total gravitational mass at infinitely
large binary separation. We focus on equal-mass binaries
here and increaseMtot in increments of 0:1M!. We identify
Mstab with the mass of the most massive binary in our
sample with a dynamically stable remnant, i.e., the most
massive system that results in a delayed collapse. We
similarly identifyMunstab with the mass of the least massive
binary whose merger triggers prompt collapse. We then
estimate Mthres ¼ ðMstab þMunstabÞ=2M! " 0:05M!.

Since thermal pressure has an important effect on the
collapse behavior (see, e.g., Refs. [31,35,52]), we have

only considered fully temperature-dependent EoSs in
this study. Many other simulations instead supplement a
barotropic, zero-temperature EoS with a thermal ideal-gas
component in order to approximate finite-temperature
effects [12–14,19,20,23,26,35]. We have found that in
such a ‘‘hybrid’’ treatment the threshold mass Mthres

depends strongly on the ideal-gas index !th. Since !th is
neither unambiguously defined nor constant [35], fully
temperature-dependent EoSs will provide more reliable
values for Mthres than a hybrid treatment.
In order to calibrate the error introduced by the confor-

mal flatness approximation, we reproduced the fully rela-
tivistic simulations of Ref. [20] and found the same
collapse behavior in all but one case, for which we
obtained a small shift in Mthres [53]. We conclude that
the effects of the conformal flatness approximation on
our results are small. We verified that our resolution with
SPH particles is sufficient by reproducing our findings for
the DD2 EoS with both 731 000 and 1 202 000 SPH parti-
cles. Finally, we reran our simulations for the DD2 EoS
starting with different initial binary separations (leading to
2.5, 3.5, and 4.5 orbits before merging) to confirm that this
separation does not affect our results.
Results.—The EoS dependence of Mthres and k can be

expressed by the stellar parameters of nonrotating NSs,
which are uniquely determined by the EoS and thus char-
acterize a given EoS. Our survey reveals that k scales very
well with the compactness Cmax ¼ ðGMmaxÞ=ðc2RmaxÞ of
the maximum-mass configuration of nonrotating NSs
(Fig. 1). We find a similarly tight relation when k is
expressed as a function of C'

1:6 ¼ ðGMmaxÞ=ðc2R1:6Þ, where
R1:6 is the radius of a 1:6M! NS (see Fig. 1). SinceR1:6 may
be more easily determined than Rmax, both by future obser-
vations [23,29,55,56] and theoretical considerations [57],
C'
1:6 might be a more useful quantity than Cmax.
As can be seen in Fig. 1, k is a nearly linear function

of C'
1:6 in the regime of interest. The maximum residual

from the linear fit k ¼ jC'
1:6 þ a with j ¼ (3:606 and

TABLE I. Sample of temperature-dependent, nuclear EoSs
used in this study. Here Mmax, Rmax, Cmax, and !c are the
gravitational mass, areal radius, compactness, and central energy
density of the maximum-mass TOV configurations. We list !c in
units of the nuclear saturation density !0 ¼ 2:7) 1014 g=cm3.
R1:6 is the areal radius of 1:6M! NSs. Mthres denotes the total
binary mass that separates prompt from delayed collapse (see the
text). fstabpeak is the dominant GW frequency in the postmerger

phase of the binary with Mtot ¼ Mstab, the most massive binary
configuration of our sample that does not collapse promptly.

EoS
Mmax

(M!)
Rmax

(km) Cmax

R1:6

(km)
Mthres

(M!) !c=!0

fstabpeak

(kHz)

NL3 [37,38] 2.79 13.43 0.307 14.81 3.85 5.6 2.78
GS1 [39] 2.75 13.27 0.306 14.79 3.85 5.7 2.81
LS375 [40] 2.71 12.34 0.325 13.71 3.65 6.5 3.05
DD2 [38,41] 2.42 11.90 0.300 13.26 3.35 7.2 3.06
Shen [42] 2.22 13.12 0.250 14.46 3.45 6.7 2.85
TM1 [43,44] 2.21 12.57 0.260 14.36 3.45 6.7 2.91
SFHX [45] 2.13 10.76 0.292 11.98 3.05 8.9 3.52
GS2 [46] 2.09 11.78 0.262 13.31 3.25 7.6 3.19
SFHO [45] 2.06 10.32 0.294 11.76 2.95 9.8 3.67
LS220 [40] 2.04 10.62 0.284 12.43 3.05 9.4 3.52
TMA [44,47] 2.02 12.09 0.247 13.73 3.25 7.2 2.96
IUF [38,48] 1.95 11.31 0.255 12.57 3.05 8.1 3.31
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FIG. 1. Coefficient k [Eq. (1)] as a function of Cmax ¼
GMmax=ðc2RmaxÞ (crosses) and C'

1:6 ¼ GMmax=ðc2R1:6Þ (circles).

PRL 111, 131101 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

27 SEPTEMBER 2013

131101-2
From Bauswein+ 2013

Mthr = kthrMmax

From DR, Perego+ ApJL 852:L29 (2018)

See also Bauswein+ 2017, DR+ 2018, Köppel+ 2019, Agathos+ 2019, Bernuzzi+ 2020



NS radii from GW170817
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• Potential to constrain the 
EOS and/or q: the basic 
physics is understood and 
included in the simulations

• Modeling uncertainties 
appear to be under control

• Systematic errors still 
dominant

• Need to explore the 
parameter space: EOS, 
mass ratios, etc.

Breschi+ (2021), 2101.01201



z

BNS postmerger: GW phase



Postmerger GW frequency

• Post-merger signal has a characteristic peak frequency

• fpeak correlates with the NS radius and tidal deformability

• A deviation from the expected correlation would be a signal for a phase transition in 

the postmerger
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FIG. 3. Mf2 dimensionless frequency as a function of the tidal coupling constant T
2 . Each panel shows the same dataset; the

color code in each panel indicates the di↵erent values of binary mass (top left), EOS (top right), mass-ratio (bottom left), and
�th (bottom right). The black solid line is our fit (see Eq. (2) and Table II); the grey area marks the 95% confidence interval.
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assuming q = MA/MB � 1. The leading-order term of
the tidal potential is simply A

T (r) = �
T
2
r
�6.

A consequence of the latter expression for A
T (r) is

that the merger dynamics is essentially determined by
the value of 

T
2

[16]. All the dynamical quantities develop
a nontrivial dependence on 

T
2

as the binary interaction
becomes tidally dominated. The characterization of the
merger dynamics via 

T
2

is “universal” in the sense that
it does not require any other parameter such as EOS, M ,
and q. (There is, however, a dependency on the stars
spins.) For example, at the reference point tmrg, the cor-
responding binary reduced binding energy E

mrg

b , the re-
duced angular momentum j

mrg, and the GW frequency

M!
mrg

22
can be fitted to simple rational polynomials [16]

Q(T
2
) = Q0

1 + n1
T
2

+ n2(T
2
)2

1 + d1
T
2

, (2)

with fit coe�cients (ni, di) given in Table II.
In view of these results, it appears natural to investi-

gate the depedency of the postmerger spectrum on 
T
2
.

Our main result is summarized in Fig. 3, which shows
the postmerger main peak dimensionless frequency Mf2

as a function of 
T
2

for a very large sample of bina-
ries. Together with our data we include those tabu-
lated in [19, 24]. The complete dataset spans the ranges
M 2 [2.45M�, 2.9M�], q 2 [1.0, 1.5], and a large varia-
tion of EOSs. The peak location is typically determined
within an accuracy of �f ⇠ ±0.2 kHz, see also [18]. Each
of the four panels of Fig. 3 shows the same data; the color
code in each panel indicates di↵erent values of M (top
left), EOS (top right), q (bottom left), and �th (bottom
right). The data correlate rather well with 

T
2
. As indi-

cated by the colors and di↵erent panels, the scattering of
the data does not correlate with variations of M , EOS, q,
�th. The black solid line is our best fit to Eq. (2), where
we set n2 = 0 and fit also for Q0, see Table II. The fit
95% confidence interval is shown as a gray shaded area
in Fig. 3.

for the postmerger phase, which could enhance the detec-
tion prospects compared to unmodeled searches [40,41] for
the Advanced LIGO and Advanced Virgo detectors and
their discussed upgrades [42–44]. For the planned Einstein
Telescope [45], direct detections of secondary peaks are a
viable prospect [36,37,40,41].

II. NATURE OF SECONDARY GW PEAKS

We investigate mergers of equal-mass, intrinsically non-
spinning NSs with a 3D relativistic smoothed particle
hydrodynamics (SPH) code, which imposes the conformal
flatness condition on the spatial metric [46,47] to solve
Einstein’s field equations and incorporates energy and
angular momentum losses by a GW backreaction scheme
[18,48] (see Refs. [12,18,28,29,49] for details on the code,
the setup, resolution tests and model uncertainties).
Comparisons to other numerical setups and also models
with an approximate consideration of neutrino effects
show an agreement in determining the postmerger spectrum
within a few percent in the peak frequencies [27–29,33,
36–38]. Magnetic field effects are negligible for not-too-
high initial field strengths [24]. We explore a representative
sample of ten microphysical, fully temperature-dependent
equations of state (EOSs) (see Table I in Ref. [39] and
Fig. 5 in this work for the mass-radius relations of non-
rotating NSs of these EOSs) and consider total binary
massesMtot between 2.4 M⊙ and 3.0 M⊙. In this work we
consider only NSs with an initially irrotational velocity
profile, because known spin periods in observed NS
binaries are slow compared to their orbital motion (see
e.g. Ref. [50]), and simulations with initial intrinsic NS spin
suggest an impact on the postmerger features of the GW
signal only for very fast spins [19,35,38].
First, we focus on a reference model for the moderately

stiff DD2 EOS [51,52] with an intermediate binary mass of
Mtot ¼ 2.7 M⊙. Figure 1 shows the x-polarization of the
effective amplitude heff;x ¼ ~hxðfÞ · f (with ~hx being the
Fourier transform of the waveform hx) vs frequency f
(reference model in black). Besides the dominant fpeak
frequency [53], there are two secondary peaks at lower
frequencies (f2−0 and fspiral) with comparable signal-to-
noise ratio. Both are generated in the postmerger phase,
which can be seen by choosing a time window covering
only the postmerger phase for computing the GW
spectrum.
The secondary peak shown as f2−0 is a nonlinear

combination frequency between the dominant quadrupolar
fpeak oscillation and the quasiradial oscillation of the
remnant, as described in Ref. [25]. We confirm this by
performing additional simulations, after adding a quasir-
adial density perturbation to the remnant at late times. The
frequency f0 of the strongly excited quasiradial oscillation
is determined by a Fourier analysis of the time evolution of
the density or central lapse function and coincides with the

frequency difference fpeak − f2−0. As in Ref. [25], the
extracted eigenfunction at f0 confirms the quasiradial
nature.
The secondary fspiral peak is produced by a strong

deformation initiated at the time of merging, the pattern
of which then rotates (in the inertial frame) slower than the
inner remnant and lasts for a few rotational periods, while
diminishing in amplitude. Figure 2 shows the density
evolution in the equatorial plane, in which one can clearly
identify the two antipodal bulges of the spiral pattern,
which rotate slower than the central parts of the remnant. In
this early phase the inner remnant is still composed of two
dense cores rotating around each other (this is the nonlinear
generalization of an m ¼ 2 quadrupole oscillation produc-
ing the dominant fpeak). Extracting the rotational motion of
the antipodal bulges in our simulations, we indeed find that
their frequency equals fspiral=2 producing gravitational
waves at fspiral (compare the times in the right panels in
Fig. 2; recall the factor 2 in the frequency of the GW signal
compared to the orbital frequency of orbiting point par-
ticles). In Fig. 2 the antipodal bulges are illustrated by
selected fluid elements (tracers), which are shown as black
and white dots, while the positions of the individual centers
of the double cores are marked by a cross and a circle. (We
define the centers of mass of the double cores by computing
the centers of mass of the innermost 1000 SPH particles of
the respective initial NSs and then following their time
evolution.) While in the right panels the antipodal bulges
completed approximately one orbit within one millisecond
(≈ 2

fspiral
), the double cores moved further ahead, i.e. with a

significantly higher orbital frequency. Examining the GW
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FIG. 1 (color online). GW spectra of 1.35–1.35 M⊙ mergers
with the DD2 [51,52] (black), NL3 [51,54] (blue) and LS220 [55]
(red) EOSs (cross polarization along the polar axis at a reference
distance of 20 Mpc). Dashed lines show the anticipated unity
SNR sensitivity curves of Advanced LIGO [1] (red) and of the
Einstein Telescope [45] (black).

A. BAUSWEIN AND N. STERGIOULAS PHYSICAL REVIEW D 91, 124056 (2015)

124056-2

From Bauswein+ 2015 From Bernuzzi+ 2015

See also Takami+ 2014; Rezzolla & Takami 2016; Dietrich+ 2016; Most+ 2018; Bauswein+ 2018, 2019; …
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FIG. 3. Mf2 dimensionless frequency as a function of the tidal coupling constant T
2 . Each panel shows the same dataset; the

color code in each panel indicates the di↵erent values of binary mass (top left), EOS (top right), mass-ratio (bottom left), and
�th (bottom right). The black solid line is our fit (see Eq. (2) and Table II); the grey area marks the 95% confidence interval.
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assuming q = MA/MB � 1. The leading-order term of
the tidal potential is simply A

T (r) = �
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�6.

A consequence of the latter expression for A
T (r) is

that the merger dynamics is essentially determined by
the value of 

T
2

[16]. All the dynamical quantities develop
a nontrivial dependence on 
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as the binary interaction
becomes tidally dominated. The characterization of the
merger dynamics via 
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is “universal” in the sense that
it does not require any other parameter such as EOS, M ,
and q. (There is, however, a dependency on the stars
spins.) For example, at the reference point tmrg, the cor-
responding binary reduced binding energy E

mrg

b , the re-
duced angular momentum j

mrg, and the GW frequency

M!
mrg

22
can be fitted to simple rational polynomials [16]

Q(T
2
) = Q0

1 + n1
T
2

+ n2(T
2
)2

1 + d1
T
2

, (2)

with fit coe�cients (ni, di) given in Table II.
In view of these results, it appears natural to investi-

gate the depedency of the postmerger spectrum on 
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.

Our main result is summarized in Fig. 3, which shows
the postmerger main peak dimensionless frequency Mf2

as a function of 
T
2

for a very large sample of bina-
ries. Together with our data we include those tabu-
lated in [19, 24]. The complete dataset spans the ranges
M 2 [2.45M�, 2.9M�], q 2 [1.0, 1.5], and a large varia-
tion of EOSs. The peak location is typically determined
within an accuracy of �f ⇠ ±0.2 kHz, see also [18]. Each
of the four panels of Fig. 3 shows the same data; the color
code in each panel indicates di↵erent values of M (top
left), EOS (top right), q (bottom left), and �th (bottom
right). The data correlate rather well with 

T
2
. As indi-

cated by the colors and di↵erent panels, the scattering of
the data does not correlate with variations of M , EOS, q,
�th. The black solid line is our best fit to Eq. (2), where
we set n2 = 0 and fit also for Q0, see Table II. The fit
95% confidence interval is shown as a gray shaded area
in Fig. 3.
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with fit coe�cients (ni, di) given in Table II.
In view of these results, it appears natural to investi-

gate the depedency of the postmerger spectrum on 
T
2
.

Our main result is summarized in Fig. 3, which shows
the postmerger main peak dimensionless frequency Mf2

as a function of 
T
2

for a very large sample of bina-
ries. Together with our data we include those tabu-
lated in [19, 24]. The complete dataset spans the ranges
M 2 [2.45M�, 2.9M�], q 2 [1.0, 1.5], and a large varia-
tion of EOSs. The peak location is typically determined
within an accuracy of �f ⇠ ±0.2 kHz, see also [18]. Each
of the four panels of Fig. 3 shows the same data; the color
code in each panel indicates di↵erent values of M (top
left), EOS (top right), q (bottom left), and �th (bottom
right). The data correlate rather well with 

T
2
. As indi-

cated by the colors and di↵erent panels, the scattering of
the data does not correlate with variations of M , EOS, q,
�th. The black solid line is our best fit to Eq. (2), where
we set n2 = 0 and fit also for Q0, see Table II. The fit
95% confidence interval is shown as a gray shaded area
in Fig. 3.



Postmerger GW amplitude
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DR, Bernuzzi, Del Pozzo+, ApJL 842:L10 (2017)

The GW amplitude could reveal the outcome of the merger and constraint the 
properties of matter at extreme densities.



Binding energy

2

3

4

5

n
m

a
x
/n

n
u
c

BHB§¡

DD2

BHB§¡

DD2

°5 0 5 10 15 20

t ° tmrg [ms]

2

4

6

8

10

°
E

b
[1

0°
2
M

Ø
c2

]

1.35 MØ + 1.35 MØ

High-density EOS encoded in the binding energy

DR, Bernuzzi, Del Pozzo+, ApJL 842:L10 (2017)



End of the GW phase
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Long term postmerger evolution



• The remnant is supported by differential rotation


• Viscosity will bring the system to solid body rotation


• If M > Mrot, then the remnant collapses to BH (HMNS), otherwise 
the remnant survives for long time (SMNS)

Common wisdom
Viscous evolution

This picture is wrong*!
* or at the very least incomplete



Remnants
Viscous evolution
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Simulation results
Viscous evolution
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FIG. 3. partially copied from David’s paper Estimated outcome of the viscous evolution of a several binaries with BLh EOS (Top
panel) and DD2 EOS (bottom panel). The gray shaded area shows the set of all rigidly rotating equilibrium configurations.
The green dashed line is a conservative estimate of the mass ejection and a possible trajectory for the viscous evolution. The
blue shaded region denotes the range of all possible outcomes of the viscous evolution. The first (disk ejecta) regime corresponds
fo the ejection of matter due to the nuclear recombination of the accretion disk. The second regime (remnant ejecta) is due to
viscous instabilities in the merger remnant. The solid black line is the evolution of overall Jtot and Mb from 3D data. The line
marked with crosses is the projected evolution based on the Jrmtot and Mb losses, which are in turn due to spiral-wave wind,
linearly extrapolated. The colored markers are placed at J where the gravitational wave losses subsides and the evolution starts
to be driven by the wind.

[SB: between the two plots this one with BLh 1.364+1.364 seems the only one sufficiently long and relevant.
we should avoid extrapolations on too long timescales but this one is actually interesting. I am not sure
about the meaning of the diamond, but I interpret the solid black line associated as the J evolution via

the matter integral of BLh 1.364+1.3.64; the text I edited refers to this understanding. TODO: lets make a
plot specific for this model, pehraphs a sequence of marked on real data is better. we should show both
the J from the GW and from the matter integral] [DR: I would only include the q = 1 run.] [DR: I would
recommend to remove the shaded regions and leave only two lines: the green line and the bottom of the

remnant region, which we can give as best analytical guess and upper bound on the ejecta (citing
Radice+2018 and without going into the details). The shaded region is meaningful only for remnants with
masses below the maximum mass for a RNS, because HMNS remnants can collapse to BHs without having to get
rid of any additional angular momentum (since a < 1).] [VN: Thank you for your comments. I tried to take
your suggestions into account on the right plot.] [VN: The gold diamond is the (JADM � JGW,Mb,0), computed in

the same was as it is done in [69]. The black line stands for the evolution of the integrated baryonic
mass and total angular momentum over with time. It starts with merger and ends at the end of the 3D data.]

[VN: I limited extrapolation and removed shaded regions.]

From Nedora, Bernuzzi, DR+, ApJ 906:98 (2021)

• Remnants have too much 
angular momentum to 
become centrally condensed


• “Viscosity” (really MHD 
turbulence and neutrinos) 
drives mass ejection


• Ultimate fate of binaries that 
survive until this point is 
difficult to predict


• Necessary physics not yet 
fully included or resolved in 
simulations



• Inspiral physics well understood, but waveform models need to 
be improved for 3G (or even a very loud signal in O4).


• The merger phase physics is understood. We can already do 
multimessenger astronomy today! Works remains to be done to 
explore the BNS parameter space (EOS, mass ratio, spin, etc)


• The postmerger GW signal can probe matter under the most 
extreme conditions, but works to be done on all fronts.


• The fate of BNS mergers over long timescales is understood only 
qualitatively.

Conclusions


