PN Properties of EMRI in Non-Vacuum Environment

Chinmay Gandevikar¹,², Divyesh Solanki², Dipanjan Dey³

¹-BITS Pilani, KKC Burla Goa Campus, India, ² SV NIT, Surat, India, ³ International Center for Cosmology, CHARUSAT, India

Methodology

Following procedure is followed to obtain the dynamical quantities and the avg. energy radiation rate accurate up to 1PN order. 0-PN terms are trivial to calculate using the 0-PN potential itself.

1. A generic form of power law potential can be written as:

\[U_{SO} = \frac{GM_{SO}}{2(\alpha + \beta)} \]

- \(\alpha = \frac{\delta}{\epsilon} \) Power on radial dist. r between SCO and SO
- \(\beta = \frac{\epsilon}{\delta} \) Scale radius of the SCO
- \(\epsilon = \) Scale mass of the SCO

Using Poisson equation, it can be seen that the mass density source for this potential has a power law dependence on the radial distance from the center of mass of the source. This potential is used to derive other quantities like the 0-PN velocity which is used to derive the higher order of potential.

2. 1-PN contribution to potential is due to the Vector potential (U), the PN correction (\(\phi \)) and the Superpotential (\(\chi \)).

3. Using the derivatives of these potentials, we obtain 1-PN equation of motion = acceleration (\(\rho \)).

4. Integrating over the acceleration term with the help of the 0-PN frequency (also using the conservation of angular momentum), the orbital velocity (\(v_{SO} \)) is derived, which is further used to derive the orbital frequency (\(\Omega \)).

5. These dynamical quantities are used to obtain the mass quadrupole tensor (\(\rho^{\alpha\beta} \)). Which is further used to obtain the average energy radiation rate (\(\frac{\Delta E}{\Delta t} \)).

\[\frac{\Delta E}{\Delta t} = -2GM_{SO}M_{EMRI}\left[\frac{\Omega_{SO}}{\Omega_{EMRI}}\left(\frac{\rho^{\alpha\beta}}{\rho^{\alpha\beta}_{SO}}\right)\right] \]

\[\frac{\Delta E}{\Delta t} = \frac{1}{2} \frac{GM_{SO}M_{EMRI}}{\rho^{\alpha\beta}_{SO}} \]

Results

- Circular orbit EMRI considered = Simplified calculations.
- Dynamical variables of the SCO:
 - Acceleration:
 \[a_{SO} = \frac{GM_{SO}}{r^{3+\delta}} \left[1 - \frac{\rho_{SO}}{r^{3+\delta}} \right] \]
 - Orbital velocity:
 \[v_{SO} = \sqrt{\frac{GM_{SO}}{r^{3+\delta}} \left[1 + \frac{1}{2} \frac{GM_{SO}}{r^{3+\delta}} \right]} \]
 - Orbital frequency:
 \[\Omega = \frac{1}{r} \sqrt{\frac{GM_{SO}}{r^{3+\delta}} \left[1 + \frac{1}{2} \frac{GM_{SO}}{r^{3+\delta}} \right]} \]

- And the average energy radiation rate is obtained as:

\[\frac{\Delta E}{\Delta t} = -2GM_{SO}M_{EMRI}\left[\frac{\Omega_{SO}}{\Omega_{EMRI}}\left(\frac{\rho^{\alpha\beta}}{\rho^{\alpha\beta}_{SO}}\right)\right] \]

- We compare these for an EMRI in
 - Vacuum region (\(\delta = 0 \)) i.e., KN Potential
 - In inhomogenous mass distribution (\(\delta \geq 0.27 < 1 \)) i.e., PL Potential

It can be noted that by substituting the value of \(\delta = 1/2 \) (i.e., KN potential) we obtain the same expressions as expected for quantities derived using KN potential.

Future Scopes

To have more enhanced and astrophysical study of the system, we can include:
- eccentricity
- higher order PN terms
- spins of the bodies
- damping effect due to the matter distribution (i.e., when the deviation is very high from \(\delta = 1/2 \)).
- orbital decay
- tidal effects on the stellar mass object

The tidal effects on the star might emit electromagnetic radiations. Hence, using individually resolvable sources, multimessenger astronomy can be performed.

References