Helium-based cooling concept of the ET-LF interferometer -summary-

- $T_{\text{HeatSink}} \rightarrow 2 \text{ K offers } T_{\text{Mirror}} \leq 10 \text{ K potential}$
- Payload thermal link operation 1.7 ... 1.9 K with He-II
- TM-cryostat cooling at three temperature levels:
 - 50...80 K (outer thermal shield) → supercritical helium
 - 5 K (inner thermal shield) → liquid helium
 - 2 K (connection to payload) → He-II
- $T_{InnerShield} < T_{Mirror} (\sim 10 \text{ K}) \text{ possible}$
- Single He-refrigerator: large cooling power at all three temperature levels
- Payload thermal link implementation via long He-II-filled capillaries
- Integration of He-II-filled hollow fibers into the payload
- Prospects: Investigation of vibrational noise propagation through the hollow fibers

Helium-based cooling concept of the ET-LF interferometer

